Answer:
S.G = 0.79.
Explanation:
Hello there!
In this case, according to the given information in the problem, it turns out possible for us to calculate the specific gravity of this alcohol by simply dividing its density, 0.79 g/mL by that of the water, 1 g/mL just as a reference for us to work with:

Thus, we plug in the densities to obtain:

Which is dimensionless as g/mL is cancelled out due to its presence on both top and bottom of the previous formula.
Regards!
Answer:
See explanation
Explanation:
The structure of ethylene is shown in the image attached. The two carbon atoms have a double covalent bond between them.
The two carbon atoms are sp2 hybridized. The bond between them is a covalent bond, there is one pi bond and one sigma bond between the carbon atoms. Between carbon and hydrogen, there are covalent bonds also. The covalent bonds are sigma bonds.
The pi bonds between carbon atoms is weaker than the sigma bonds between the carbon atoms. This is because, the side-by-side overlap the p orbitals in a pi bond is less effective than the end-to-end overlap of a sigma bond.
Explanation:
1) refine the specimen into fine powder 2) place the smallest amount you can see in the capillary tube 3) set the voltage to increase exponentially to 200 below the predicted temperature, then adjust so that the temperature rises to 20 per minute 4) report the temperature at which the liquid first appears and the temperature at which the last crystal disappears.
Answer:
The Kc of this reaction is 311.97
Explanation:
Step 1: Data given
Kp = 0.174
Temperature = 243 °C
Step 2: The balanced equation
N2(g) + 3H2(g) ⇌ 2NH3(g)
Step 3: Calculate Kc
Kp = Kc *(RT)^Δn
⇒ with Kp = 0.174
⇒ with Kc = TO BE DETERMINED
⇒ with R = the gas constant = 0.08206 Latm/Kmol
⇒ with T = the temperature = 243 °C = 516 K
⇒ with Δn = number of moles products - moles reactants 2 – (1 + 3) = -2
0.174 = Kc (0.08206*516)^-2
Kc = 311.97
The Kc of this reaction is 311.97