1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vova2212 [387]
3 years ago
13

The work done by an external force to move a -8.50 μC charge from point a to point b is 6.10×10−4 J . If the charge was started

from rest and had 1.50×10−4 J of kinetic energy when it reached point b, what must be the potential difference between a and b?
Physics
1 answer:
bekas [8.4K]3 years ago
5 0

Answer:

-54.12 V

Explanation:

The work done by this force is equal to the difference between the final value and the initial value of the energy. Since the charge starts from the rest its initial kinetic energy is zero.

W=\Delta E\\W=\Delta K+\Delta U\\W=K_f+\Delta U\\\Delta U=W-K_f\\\Delta U=6.10*10^{-4}J-1.50*10^{-4}J\\\Delta U=4.60*10^{-4}J

The change in electrostatic potential energy \Delta U, of one point charge q is defined as the product of the charge and the potential difference.

\Delta U=qV\\V=\frac{\Delta U}{q}\\V=\frac{4.60*10^{-4}J}{-8.50*10^{-6}C}\\V=-54.12 V

You might be interested in
Which of the following has the greatest amount of kinetic energy a)slice of pizza b)a person at the top of the stairs c)wind d)a
Talja [164]

Answer:

c)wind

Explanation:

Wind from the given choices will have the greatest amount of kinetic energy.

Kinetic energy is the energy due to motion of a body. It is different from the energy at rest in a body.

  • Wind is air in motion.
  • Wind energy is a form of kinetic energy in motion.

A book on a table, a slice of pizza and a person at the top of the stairs are all at rest and will possess potential energy.

7 0
3 years ago
You are designing a 108 cm3 right circular cylindrical can whose manufacture will take waste into account. There is no waste in
FinnZ [79.3K]

Explanation:

It is given that,

The volume of a right circular cylindrical, V=108\ cm^3

We know that the volume of the cylinder is given by :

V=\pi r^2 h

108=\pi r^2 h    

h=\dfrac{108}{\pi r^2}............(1)

The upper area is given by :

A=32r^2+2\pi rh

A=32r^2+2\pi r\times \dfrac{108}{\pi r^2}

A=32r^2+\dfrac{216}{r}

For maximum area, differentiate above equation wrt r such that, we get :

\dfrac{dA}{dr}=64r-\dfrac{216}{r^2}

64r-\dfrac{216}{r^2}=0

r^3=\dfrac{216}{64}

r = 1.83 m

Dividing equation (1) with r such that,

\dfrac{h}{r}=\dfrac{108}{\pi r}

\dfrac{h}{r}=\dfrac{108}{\pi 1.83}

\dfrac{h}{r}=59 \pi

Hence, this is the required solution.

8 0
3 years ago
Water of density 1000 kg/m3 falls without splashing at a rate of 0.373 L/s from a height of 40.5 m into a 0.64 kg bucket on a sc
Sphinxa [80]

Answer:

       F_scale = 20.18 N

Explanation:

The scale reading corresponds to two factors, the first the weight of the water in the container and the second the force of the liquid that is falling at the moment of reading.

* Let's find the amount of liquid in the container for a time of t = 2.93 s

Let's use a direct proportion rule. If 0.373 l falls in one second at t = 2.93 s, how many liters are there

        V_{water} = 2.93 s (0.373 l / 1s) = 1.09 l

        V_{water} = 1.09 10⁻³ m³

the amount of water is

       ρ = m / V

       m = ρ V

       m = 1000 1.09 10⁻³

       m = 1.09 kg

so the weight of the liquid in the container for this time is

       W = mg

       W = 1.09 9.8

       W = 10.68 N

* Let's look for the force of the falling jet

Let's use Bernoulli's equation, where the subscript 1 is for the container and the subscript 2 is for the water at a height h

        P₁ + 1/2 ρ g v₁² + ρ g y₁ = P₂ + 1/2  ρ g v₂² + ρ g y₂

In this case, the water falls freely, so the external pressure is atmospheric.

         P₂ = P_{atm}

since they indicate that the water falls, we assume that its initial velocity is zero v₂ = 0

let's use kinematics to find the speed of a drop when it reaches the container y = 0

         v² = v₀² - 2 g (y-y₀)

         v = \sqrt{0 -2 g ( 0-y_o)}

let's calculate

         v = √(2 9.8 40.5)

         v = 28.17 m / s

this is the speed in the container v₁ = 28.17 m / s

the height from where it falls is y₂ = 40.5 and reaches the container y₁ = 0

we substitute in Bernoulli's equation

         P₁ +1/2 ρ g v₁² + 0 = P_{atm} + 0 + ρ g y₂

         P₁ + ½ ρ g v₁² = P_{atm} + ρ g y₂

         P₁ = P_{atm} + ρ g y₂ - ½ ρ g v₁²

         P₁ = 1 10⁵ + 1000 9.8 40.5 - ½ 1000 28.17²

         P₁ = 1 10⁵ + 3.97 10⁵ - 3.69 10⁵

         P₁ = 1.28 10⁵ Pa

The definition of Pressure is

         P = F / A

         F = P A

We must suppose a time to carry out the reading suppose an average time of the modern equipment t = 0.1 s, in this time how much is now arriving

          m₂ = 0.373 0.2 = 0.0746 l = 0.0746 10⁻³ m³

the volume is V = A l

if the length of l = 1 m

A = 0.0746 10⁻³ m³ = 7.45 10⁻⁵ m²

the force of this jet is

            F = P A

            F = 1.28 10⁵  7.46 10⁻⁵

            F = 9.5 N

with these data let's use the equilibrium equation

           F_ scale -W - F = 0

           F_scale = W + F

           F_scale = 10.682 + 9.5

           F_scale = 20.18 N

4 0
3 years ago
A 50-g cube of ice, initially at 0.0°C, is dropped into 200 g of water in an 80-g aluminum container, both initially at 30°C.
MakcuM [25]

Answer:

b. 9.5°C

Explanation:

m_i = Mass of ice = 50 g

T_i = Initial temperature of water and Aluminum = 30°C

L_f = Latent heat of fusion = 3.33\times 10^5\ J/kg^{\circ}C

m_w = Mass of water = 200 g

c_w = Specific heat of water = 4186 J/kg⋅°C

m_{Al} = Mass of Aluminum = 80 g

c_{Al} = Specific heat of Aluminum = 900 J/kg⋅°C

The equation of the system's heat exchange is given by

m_i(L_f+c_wT)+m_wc_w(T-T_i)+m_{Al}c_{Al}=0\\\Rightarrow 0.05\times (3.33\times 10^5+4186\times T)+0.2\times 4186(T-30)+0.08\times 900(T-30)=0\\\Rightarrow 1118.5T-10626=0\\\Rightarrow T=\dfrac{10626}{1118.5}\\\Rightarrow T=9.50022\ ^{\circ}C

The final equilibrium temperature is 9.50022°C

4 0
3 years ago
The source of the earth’s magnetic field is found in the _____.
telo118 [61]
The source of the earth's magnetic field is found in the ;LIQUID MAGNETIZED IRON IN THE CORE OF THE EARTH. The earth's magnetic field is believed to be generated very deep down in the earth's core as a result of molten iron which it contains. 
5 0
3 years ago
Read 2 more answers
Other questions:
  • The tub of a washer goes into its spin-dry cycle, starting from rest and reaching an angular speed of 2.0 rev/s in 10.0 s. At th
    11·1 answer
  • A 51.1-kg crate rests on a level floor at a shipping dock. The coefficients of static and kinetic friction are 0.622 and 0.368,
    11·1 answer
  • Why does the emission spectrum of hydrogen or unknown source have a distinct line spectrum instead of a continuous one?
    5·1 answer
  • The law of conservation of mass states that
    11·1 answer
  • Definition of displacement
    10·1 answer
  • Most metals are not magnetic but iron is why?
    9·1 answer
  • (Power Cycle)​ Your new boss announces at a team meeting that she has developed atechnology that will perform a power cycle that
    12·1 answer
  • Express 3 x 10-9s in milliseconds
    9·2 answers
  • How to measure the weight of an object??? HELP! ​
    7·1 answer
  • POSSIBLE POINTS: 60
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!