Density = (mass) / (volume)
4,000 kg/m³ = (mass) / (0.09 m³)
Multiply each side
by 0.09 m³ : (4,000 kg/m³) x (0.09 m³) = mass
mass = 360 kg .
Force of gravity = (mass) x (acceleration of gravity)
= (360 kg) x (9.8 m/s²)
= (360 x 9.8) kg-m/s²
= 3,528 newtons .
That's the force of gravity on this block, and it doesn't matter
what else is around it. It could be in a box on the shelf or at
the bottom of a swimming pool . . . it's weight is 3,528 newtons
(about 793.7 pounds).
Now, it won't seem that heavy when it's in the water, because
there's another force acting on it in the upward direction, against
gravity. That's the buoyant force due to the displaced water.
The block is displacing 0.09 m³ of water. Water has 1,000 kg of
mass in a m³, so the block displaces 90 kg of water. The weight
of that water is (90) x (9.8) = 882 newtons (about 198.4 pounds),
and that force tries to hold the block up, against gravity.
So while it's in the water, the block seems to weigh
(3,528 - 882) = 2,646 newtons (about 595.2 pounds) .
But again ... it's not correct to call that the "force of gravity acting
on the block in water". The force of gravity doesn't change, but
there's another force, working against gravity, in the water.
The picture shows it has a real life something to display conservation of energy with kinetic energy and potential energy.
Five sentences are for potential and kinetic energy. Potential energy is to energy an object when it stores. Kinetic energy is something to motion. When the potential energy is slows down the potential energy it might be increases. As from the object when the speeds up and it is decreases to potential energy.
Kinetic energy is to calculated by KE= mass×velocity²/2 as a fraction.
Potential energy is to calculated by PE= mass×g×height.
And the another picture it has a <span>energy, kinetic energy, mechanical energy, conservation of energy.
</span>
Answer:
See explanation
Explanation:
First, in order for you to understand, remember the basic concept of meniscus in graduated cylinder.
<em>"The meniscus is the curve seen at the top of a liquid in response to its container. The meniscus can be either concave or convex, depending on the surface tension of the liquid and its adhesion to the wall of the container".</em>
Now, according to this definition, and for water, the reading of the volume must be donde at the bottom of the curve of the meniscus. This is because the water gives a concave curve.
If you read it and matches the height of water, you are getting two results:
One, get an accurate value or volume, because it's been done at eye level.
The second fact is that when you do the reading this way, The total pressure is made equal to the atmospheric pressure by adjusting the height of the cylinder until the water level is equal.
The cost of developing thermonuclear power with plasmabe defended because D. It can provide an inexpensive power source.
<h3>How did the
cost of developing t
hermonuclear power defended?</h3>
The cost of developing thermonuclear power defended becvause we can see in the paragraph how it was told that the generation of ths power can be donee through the understanding of the occurrence of plasmain nature,
It should be noted that this thermonuclear power with plasmabe posses the characteristics which make it to exist in the ionosphere, and it can be felt in the flames as well; as in the chemical and nuclearexplosions.
In conclusion the power can be seen as an inexpensive source power because the p[roduction of this power cn be found in most of the thing that can be found around us as discused above.
Therefore, option D is correct.
Read more about cost at:
brainly.com/question/25109150
#SPJ1
Answer:
B'= 3.333 B
Explanation:
Lets take
Initial area = A
Magnetic field = B
The area after compression
A'=0.3 A
Magnetic field = B'
We know that flux ,Ф
Ф = B A
Given that flux is constant so
B A = B' A'
B A=B' x 0.3 A
B'= 3.333 B
It means that magnetic field will increase.