The question is incomplete! Complete question along with answer and step by step explanation is provided below.
Question:
Calculate the equivalent capacitance of the three series capacitors in Figure 12-1
a) 0.01 μF
b) 0.58 μF
c) 0.060 μF
d) 0.8 μF
Answer:
The equivalent capacitance of the three series capacitors in Figure 12-1 is 0.060 μF
Therefore, the correct option is (c)
Explanation:
Please refer to the attached Figure 12-1 where three capacitors are connected in series.
We are asked to find out the equivalent capacitance of this circuit.
Recall that the equivalent capacitance in series is given by

Where C₁, C₂, and C₃ are the individual capacitance connected in series.
C₁ = 0.1 μF
C₂ = 0.22 μF
C₃ = 0.47 μF
So the equivalent capacitance is




Rounding off yields

The equivalent capacitance of the three series capacitors in Figure 12-1 is 0.060 μF
Therefore, the correct option is (c)
Answer: a) 0.948 b) 117.5µf
Explanation:
Given the load, a total of 2.4kw and 0.8pf
V= 120V, 60 Hz
P= 2.4 kw, cos θ= 80
P= S sin θ - (p/cos θ) sin θ
= P tan θ(cos^-1 (0.8)
=2.4 tan(36.87)= 1.8KVAR
S= 2.4 + j1. 8KVA
1 load absorbs 1.5 kW at 0.707 pf lagging
P= 1.5 kW, cos θ= 0.707 and θ=45 degree
Q= Ptan θ= tan 45°
Q=P=1.5kw
S1= 1.5 +1.5j KVA
S1 + S2= S
2.4+j1.8= 1.5+1.5j + S2
S2= 0.9 + 0.3j KVA
S2= 0.949= 18.43 °
Pf= cos(18.43°) = 0.948
b.) pf to 0.9, a capacitor is needed.
Pf = 0.9
Cos θ= 0.9
θ= 25.84 °
(WC) V^2= P (tan θ1 - tan θ2)
C= 2400 ( tan (36. 87°) - tan (25.84°)) /2 πf × 120^2
f=60, π=22/7
C= 117.5µf
Answer:
sorry im answering questions for the points cuz im built dfferent
Explanation:
Answer:
small guitar with no strings?
Explanation:
it would be fun to make i think