1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
miskamm [114]
3 years ago
9

Why do wires hang loosely during summer?

Engineering
1 answer:
Stella [2.4K]3 years ago
6 0

Answer:

due to the expansion process and they contract during winter due to the contraction process. Explanation: Electric cables are the solids which exhibit the property of contraction and expansion.

You might be interested in
A Pelton wheel is supplied with water from a lake at an elevation H above the turbine. The penstock that supplies the water to t
gayaneshka [121]

Answer:

Following are the proving to this question:

Explanation:

\frac{D_1}{D} = \frac{1}{(2f(\frac{l}{D}))^{\frac{1}{4}}}

using the energy equation for entry and exit value :

\to \frac{p_o}{y} +\frac{V^{2}_{o}}{2g}+Z_0  = \frac{p_1}{y} +\frac{V^{2}_{1}}{2g}+Z_1+ f \frac{l}{D}\frac{V^{2}}{2g}

where

\to p_0=p_1=0\\\\\to Z_0=Z_1=H\\\\\to v_0=0\\\\AV =A_1V_1 \\\\\to V=(\frac{D_1}{D})^2 V_1\\\\\to V^2=(\frac{D_1}{D})^4 V^{2}_{1}

         = (\frac{1}{(2f (\frac{l}{D} ))^{\frac{1}{4}}})^4\  V^{2}_{1}\\\\

         = \frac{1}{(2f (\frac{l}{D})  )} \  V^{2}_{1}\\

\to \frac{p_o}{y} +\frac{V^{2}_{o}}{2g}+Z_0  =\frac{p_1}{y} +\frac{V^{2}_{1}}{2g}+Z_1+ f \frac{l}{D}\frac{V^{2}}{2g} \\\\

\to 0+0+Z_0 = 0  +\frac{V^{2}_{1} }{2g} +Z_1+ f \frac{l}{D} \frac{\frac{1}{(2f(\frac{l}{D}))}\ V^{2}_{1}}{2g}   \\\\\to Z_0 -Z_1 = +\frac{V^{2}_{1}}{2g} \ (1+f\frac{l}{D}\frac{1}{(2f(\frac{l}{D}) )} )  \\\\\to H= \frac{V^{2}_{1}}{2g} (\frac{3}{2}) \\\\\to  \frac{V^{2}_{1}}{2g} = H(\frac{3}{2})

L.H.S = R.H.S

7 0
3 years ago
In which situation is a are food service workers not required to wash their hands?
Margarita [4]

Answer:

when wearing gloves?

Explanation:

?

or when off duty

3 0
3 years ago
Read 2 more answers
A parallel plates capacitor is filled with a dielectric of relative permittivity ε = 12 and a conductivity σ = 10^-10 S/m. The c
monitta

Answer:

t = 1.06 sec

Explanation:

Once disconnected from the battery, the capacitor discharges through the internal resistance of the dielectric, which can be expressed as follows:

R = (1/σ)*d/A, where d is is the separation between plates, and A is the area of one of  the plates.

The capacitance C , for a parallel plates capacitor filled with a dielectric of a relative permittivity ε, can be expressed in this way:

C = ε₀*ε*A/d = 8.85*10⁻¹² *12*A/d

The voltage in the capacitor (which is proportional to the residual charge as it discharges through the resistance of the dielectric) follows an exponential decay, as follows:

V = V₀*e(-t/RC)

The product RC (which is called the time constant of the circuit) can be calculated as follows:

R*C = (1/10⁻¹⁰)*d/A*8.85*10⁻¹² *12*A/d

Simplifying common terms, we finally have:

R*C = 8.85*10⁻¹² *12 / (1/10⁻¹⁰) sec = 1.06 sec

If we want to know the time at which the voltage will decay to 3.67 V, we can write the following expression:

V= V₀*e(-t/RC) ⇒ e(-t/RC) = 3.67/10 ⇒ -t/RC = ln(3.67/10)= -1

⇒ t = RC = 1.06 sec.

3 0
3 years ago
An amplifier which needs a high input resistance and a high output resistance is : Select one: a. A voltage amplifier b. None of
True [87]

Answer:

None of these

Explanation:

There are different types of amplifiers, and each has different characteristics.

  • Voltage amplifier needs high input and low output  resistance.
  • Current amplifier needs Low Input and High Output  resistance.
  • Trans-conductance amplifier Low Input and High Output resistance.
  • Trans-Resistance amplifier requires High Input and Low output  resistance.

Therefore, the correct answer is "None of these "

3 0
3 years ago
Compressed Air In a piston-cylinder device, 10 gr of air is compressed isentropically. The air is initially at 27 °C and 110 kPa
Helen [10]

Answer:

(a) 2.39 MPa (b) 3.03 kJ (c) 3.035 kJ

Explanation:

Solution

Recall that:

A 10 gr of air is compressed isentropically

The initial air is at = 27 °C, 110 kPa

After compression air is at = a450 °C

For air,  R=287 J/kg.K

cv = 716.5 J/kg.K

y = 1.4

Now,

(a) W efind the pressure on [MPa]

Thus,

T₂/T₁ = (p₂/p₁)^r-1/r

=(450 + 273)/27 + 273) =

=(p₂/110) ^0.4/1.4

p₂ becomes  2390.3 kPa

So, p₂ = 2.39 MPa

(b) For the increase in total internal energy, is given below:

ΔU = mCv (T₂ - T₁)

=(10/100) (716.5) (450 -27)

ΔU =3030 J

ΔU =3.03 kJ

(c) The next step is to find the total work needed in kJ

ΔW = mR ( (T₂ - T₁) / k- 1

(10/100) (287) (450 -27)/1.4 -1

ΔW = 3035 J

Hence, the total work required is = 3.035 kJ

4 0
3 years ago
Other questions:
  • Ammonia enters an adiabatic compressor operating at steady state as saturated vapor at 300 kPa and exits at 1400 kPa, 140◦C. Kin
    11·1 answer
  • Which of the following color schemes is composed of hues next to eachother on the color wheel ?
    7·1 answer
  • What is the heat flux (W/m2) to an object when subjected to convection heat transfer environment given: 24 °C = the surface temp
    10·1 answer
  • 21.13 The index of refraction of corundum (Al2O3) is anisotropic. Suppose that visible light is passing from one grain to anothe
    5·1 answer
  • read a file called filled in with a few sentences or a paragraph. Then write a function called typoglycemia, which scrambles the
    13·1 answer
  • 2. The following segment of carotid artery has an inlet velocity of 50 cm/s (diameter of 15 mm). The outlet has a diameter of 11
    13·1 answer
  • Does an electronic clock use electrical energy?​
    10·2 answers
  • Is the science of measurement
    13·2 answers
  • Coving is a curved edge between a floor and a wall.<br> O True<br> O False
    13·2 answers
  • Drivers must be careful when driving close to cyclists and should keep at least ___ feet apart when passing cyclists on the road
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!