Answer: The net force in every bolt is 44.9 kip
Explanation:
Given that;
External load applied = 245 kip
number of bolts n = 10
External Load shared by each bolt (P_E) = 245/10 = 24.5 kip
spring constant of the bolt Kb = 0.4 Mlb/in
spring constant of members Kc = 1.6 Mlb/in
combined stiffness factor C = Kb / (kb+kc) = 0.4 / ( 0.4 + 1.6) = 0.4 / 2 = 0.2 Mlb/in
Initial pre load Pi = 40 kip
now for Bolts; both pre load Pi and external load P_E are tensile in nature, therefore we add both of them
External Load on each bolt P_Eb = C × PE = 0.2 × 24.5 = 4.9 kip
So Total net Force on each bolt Fb = P_Eb + Pi
Fb = 4.9 kip + 40 kip
Fb = 44.9 kip
Therefore the net force in every bolt is 44.9 kip
Answer:
The Euler buckling load of a 160-cm-long column will be 1.33 times the Euler buckling load of an equivalent 120-cm-long column.
Explanation:
160 - 120 = 40
120 = 100
40 = X
40 x 100 / 120 = X
4000 / 120 = X
33.333 = X
120 = 100
160 = X
160 x 100 /120 = X
16000 / 120 = X
133.333 = X
I don’t know how to answer :’(
555.66 is the answer I think
The question is not complete. We are supposed to find the average value of v_o.
Answer:
v_o,avg = 0.441V
Explanation:
Let t1 and t2 be the start and stop times of the output waveforms. Thus, from the diagram i attached, using similar triangles, we have;
3/(T/4) = 0.7/t1
So, 12/T = 0.7/t1
So, t1 = 0.7T/12
t1 = 0.0583 T
Also, from symmetry of triangles,
t2 = T/2 - t1
So, t2 = T/2 - 0.0583 T
t2 = 0.4417T
Average of voltage output is;
v_o,avg = (1/T) x Area under small triangle
v_o,avg = (1/T) x (3 - 0.7) x (T/4 - t1)
v_o,avg = (1/T) x (2.3) x (T/4 - 0.0583 T)
v_o,avg = (1/T) x 2.3 x 0.1917T
T will cancel out to give;
v_o,avg = 0.441V