<span>The region(s) of the periodic table which are
made up of elements that can adopt both positive and negative oxidation numbers
are the “non-metal” region. As we can see on the periodic table, the elements situated
at the right side of the table have two oxidation states, one positive and the
other a negative. </span>
Answer:
Yes.
The nuclear equation {226/88 Ra → 222/26 Rn + 4/2 He} is balanced. As we know that an alpha particle is identical to a helium atom. This implies that if an alpha particle is eliminated from an atom's nucleus, an atomic number of 2 and a mass number of 4 is lost.
Therefore, the equation will be reduced to:
226 - 4 = 222
88 - 2 = 86
Hence, the equation is balanced.
Explanation:
Answer:
ΔS = -661.0J/mol is the entropy change for the system
ΔS = -842J/mol.K is the entropy change for the surroundings
Explanation:
From the relationship between ΔG, T, ΔH and ΔS,
Mathematically, ΔG = ΔH - TΔS
TΔS = ΔH - ΔS
ΔS = ΔH - ΔS / T
but ΔG = -54 kJ/mol, ΔH = -251 kJ/mol and T = 25 °C (298 K)
plugging into the equation,
ΔS = -251 kJ/mol - ( -54 kJ/mol) / 298
ΔS = -0.6610KJ/mol or in J.mol
ΔS = -661.0J/mol is the entropy change for the system
- For entropy change for the surroundings = ΔS = ΔH/T
- ΔS = -0.84KJ/mol.K or -842J/mol.K is the entropy change for the surroundings