Answer:

Explanation:
Hello!
In this case, considering the Gay-Lussac's law which describes the pressure-temperature behavior as a directly proportional relationship by holding the volume as constant, we write:

Whereas solving for the final temperature T2, we get:

Thus, we plug in the given data (temperature in Kelvins) to obtain:

Best regards!
Answer:
This question is incomplete
Explanation:
This question is incomplete, however, the element that has 52 electrons only is Tellurium (Te) and when the electronic configuration of elements with more than 52 electrons are written, the 52nd electron is indicated/paired the same way the 52nd electron of Te is indicated/paired. Hence, while writing the electronic configuration of Te, it is written as
[Kr] 4d¹⁰ 5s² 5p⁴ where [Kr] is the electronic configuration of krypton. Based on this, we can deduce that the 52nd electron will be in the first orbital of the P subshell (as attached in the picture). This is because when indicating the electrons in the subshell, one electron will be spread across each orbital and if any electron is still remaining, it will be added starting from to the first orbital of the subshell, however no two electrons in an orbital in a subshell can have the same spin and hence must face opposite direction based on pauli's exclusion principle (as seen in attached); thus for the 5p-orbital of elements with 52 or more electrons, when one electron each is represented in each box (3 boxes in total) in the 5p-orbital, the remaining electron is paired with the the first electron in the first box of the 5p-orbital
Answer:
They are found in South America and African Plates. Earths outer layer is made out of solid rock. These fossils are sometimes discovered closer to the mantle; the mantle is between the crust and the earths super-heated core!
Explanation:
Copy the answer and im sure you'll get it right!
Have a wonderful day/night and believe in yourself!
Ammonium perchlorate appears as a white, crystalline solid or powder. Classified as a division 1.1 explosive if powdered into particles smaller than 15 microns in diameter or if powdered into larger particles but thoroughly dried. Does not readily burn, but will burn if contaminated by combustible material. May explode under prolonged exposure to heat or fire. Used to make rocket propellants, explosives, pyrotechnics, as an etching and engraving agent, and in analytical chemistry.