Answer:
This question is incomplete
Explanation:
This question is incomplete because the result of the described experiment would have better determined the type of scientific explanation to profer. However, the type of material that will preserve the relative hotness or temperature of the hot coffee for the longest time will be a material than can resist heat transfer. These materials tend to keep hot substances hot by not allowing the heat of the coffee to be conducted or pass through it. These materials are mostly insulators or made by placing an insulator between two heat conductors.
Generally, heat is usually transferred from a region of higher concentration to a region of lower concentration, hence when the heat is denied of this transfer, the heat will remain trapped in the "heat-donor" substance (in this case the hot coffee). Thus, the material chosen (A, B or C) will be the material that resists heat transfer the most based on the explanation above.
The air pressure inside the can is lower compared to that of outside air pressure.
Explanation:
- In general, the air pressure of an already opened can will be the same as the outside pressure.
- Since the can is evacuated and remain as vacuum, so there will be no pressure difference in it.
- If the can opens, air inside the can push the top and escapes to the outside.
- This is due to high pressure experienced outside the can compare to that of lower pressure inside the can and this may even cause can to collapse itself.
The answers would be organisms in water, water, and air.
Answer: The volume of the oxygen gas at a pressure of 2.50 atm will be 1.44 L
At constant temperature, the volume of a fixed mass of gas is inversely proportional to the pressure it exerts, then
PV = c
Thus, if the pressure increases, the volume decreases, and if the pressure decreases, the volume increases.
It is not necessary to know the exact value of the constant c to be able to use this law since for a fixed amount of gas at constant temperature, it is satisfied that,
P₁V₁ = P₂V₂
Where P₁ and P₂ as well as V₁ and V₂ correspond to pressures and volumes for two different states of the gas in question.
In this case the first oxygen gas state corresponds to P₁ = 1.00 atm and V₁ = 3.60 L while the second state would be P₂ = 2.50 atm and V₂ = y. Substituting in the previous equation,
1.00 atm x 3.60 L = 2.50 atm x y
We cleared y to find V₂,
V₂ = y =
= 1.44 L
Then, <u>the volume of the oxygen gas at a pressure of 2.50 atm will be 1.44 L</u>