Let's assume this is a drawing of particles of a gas substance. This assumption is made upon the fact that these particles are not close and are represented in motion characteristic for gases. Gases can become solid by skipping the liquid phase. This process is called deposition. Also, a gas can become a liquid through the process of condensation as a result of energy loss at molecular level. Likewise, this is enabled thanks to heat loss or applied pressure.
The initial velocity of the stone is 0 ft/s. Given the initial velocity (Vi), final velocity (Vf), and acceleration due to gravity (g), the distance may be calculated through the equation,
d = ((Vf)² - (Vi)²) / 2g
Substituting the known values,
d = ((96 ft/s)² - 0))/ (2x32.2)
The value of d is 143.10 ft.
Answer:
Rotational inertia decreases proportional to the decrease in the radius of rotation.
Explanation: