Answer:
the answer is b because it does not show evidence
Answer:
magnitude of the frictional torque is 0.11 Nm
Explanation:
Moment of inertia I = 0.33 kg⋅m2
Initial angular velocity w° = 0.69 rev/s = 2 x 3.142 x 0.69 = 4.34 rad/s
Final angular velocity w = 0 (since it stops)
Time t = 13 secs
Using w = w° + §t
Where § is angular acceleration
O = 4.34 + 13§
§ = -4.34/13 = -0.33 rad/s2
The negative sign implies it's a negative acceleration.
Frictional torque that brought it to rest must be equal to the original torque.
Torqu = I x §
T = 0.33 x 0.33 = 0.11 Nm
Hello,
Here is your answer:
The proper answer for this question is option B "When released,a book falls to the ground". That's because of gravity the book will hit the ground!
Your answer is B.
If you need anymore help feel free to ask me!
Hope this helps.
I’m sure “save” is the correct answer, as it is the only grammatically correct answer choice. Also, it is easy to save when you know what you’ll have to pay for in the future.
Explanation:
A perfectly elastic collision is defined as one in which there is no loss of kinetic energy in the collision. An inelastic collision is one in which part of the kinetic energy is changed to some other form of energy in the collision.