Answer:
<em>v</em><em> </em>= T/(2R)
Explanation:
Given
R = radius
T = strength
From Biot - Savart Law
d<em>v</em> = (T/4π)* (d<em>l</em> x <em>r</em>)/r³
Velocity induced at center
<em>v </em>= ∫ (T/4π)* (d<em>l</em> x <em>r</em>)/r³
⇒ <em>v </em>= ∫ (T/4π)* (d<em>l</em> x <em>R</em>)/R³ (<em>k</em>) <em>k</em><em>:</em> unit vector perpendicular to plane of loop
⇒ <em>v </em>= (T/4π)(1/R²) ∫ dl
If l ∈ (0, 2πR)
⇒ <em>v </em>= (T/4π)(1/R²)(2πR) (<em>k</em>) ⇒ <em>v </em>= T/(2R) (<em>k</em>)
Answer:
a)
, b)
, c) 
Explanation:
a) The tank can be modelled by the Principle of Mass Conservation:

The mass flow rate exiting the tank is:



b) An expression for the specific enthalpy at outlet is derived from the First Law of Thermodynamics:


Properties of water are obtained from tables:



The specific enthalpy at outlet is:


c) After a quick interpolation from data availables on water tables, the final temperature is:

Answer:
The average velocity is 0.203 m/s
Explanation:
Given;
initial displacement, x₁ = 20 yards = 18.288 m
final displacement, x₂ = ¹/₃ x 18.288 = 6.096 m
change in time between 5:02 PM and 5:03 PM, Δt = 3 mins - 2 mins = 1 min = 60 s
The average velocity is given by;
V = change in displacement / change in time
V = (x₂ - x₁) / Δt
V = (18.288 - 6.096) / 60
V = 0.203 m/s
Therefore, the average velocity is 0.203 m/s
ANSWER:
Aerospace Engineering. ...
Chemical Engineering. ...
Biomedical Engineering.
EXPLANATION:
This is all i know but ... I hope this helps~