Answer: 3 different types of people using Highway Transportation system are :
1. Pedestrians - should be given priority while driving.
2. Cyclists - should be given enough space on road.
3. Motorcyclists- should be given enough space on road.
Explanation:
1. Pedestrians - Most of pedestrians use to walk on the footpath along side road that keeps them on a safe side. But there are places without footpath along side road, in that case they have to walk on the road itself. Here, we need to take care for them. We need to wait in case they are crossing road and also check for them while taking a turn.
2. Cyclists - They travel on road but are tough to figure out. They travel at a slower pace compared to cars. To avoid any accident with them, we are supposed to give them enough space which should be equivalent to a car's space.
3. Motorcyclists - They can pass by very closely and also come between lanes. Most of the things to be considered here are same as that of cyclists. Here also, we need to check for them carefully while taking a turn. Also, need to give them enough space.
Answer: a) 1.05kW b) 3.78MJ c) 5.3 bars
Explanation :
A)
Conversions give 900 kcal as 900000 x 4.2 J/cal {4.2 J/cal is the standard factor}
= 3780kJ
And 1 hour = 3600s
Therefore, Power in watts = 3780/3600 = 1.05kW = 1050W
B)
At 15km/hour a 15km run takes 1 hour.
1 hour is 3600s and the runner burns 1050 joule per second.
Energy used in 1 hour = 3600 x 1050 J/s
= 3780000 J or 3.78MJ
C)
1 mile = 1.61km so 13.1 mile is 13.1 x 1.61 = 21.1km
15km needs 3.78 MJ of energy therefore 21.1km needs 3.78 x 21.1/15 = 5.32MJ =5320 kJ
Finally,
1 Milky Way = 240000 calories = 4.2 x 240000 J = 1008000J or 1008kJ
This means that the runner needs 5320/1008 = 5.3 bars
Answer:
the president and mr.white my history teacher lol
Answer:

Explanation:
Let assume that heating process occurs at constant pressure, the phenomenon is modelled by the use of the First Law of Thermodynamics:

The specific enthalpies are:
Liquid-Vapor Mixture:

Saturated Vapor:

The thermal energy per unit mass required to heat the steam is:

