Since Oxygen is in group 16, this element has 6 valence electrons. Valence electrons like to become as stable as possible and similar to a noble gas, which has 8 electrons. You need to find an element that will transfer its atoms to the oxygen to make 8 electrons. Looking at the periodic table, Selenium is in group 16 and will have 6 valence electrons (6 + 6 = 12). This can't transfer electrons with Oxygen. Hydrogen is in group 1 with 1 valence electron (6 + 1 = 7). This can't transfer electrons with Oxygen. Strontium is in group 2 with 2 valence electrons (6 + 2 = 8). This will transfer electrons to Oxygen, making it the most stable.
The answer is O and Sr.
A) heating a pan of water until the water is all gone because then it would change from a liquid top a gas.
↪ Hello miss "galaxyu035" here's your answer for the question you wrote.
Answer :
No, <u>we cannot</u> stir silver nitrate solution with a copper spoon <u>because</u> , copper is more reactive than silver. Thus,it would displace silver from the silver nitrate solution forming copper nitrate.
---
Remember if my answer helps you! Might give me a thank you! By clicking the heart button .
<u>Answer:</u> The half life of the sample of silver-112 is 3.303 hours.
<u>Explanation:</u>
All radioactive decay processes undergoes first order reaction.
To calculate the rate constant for first order reaction, we use the integrated rate law equation for first order, which is:
![k=\frac{2.303}{t}\log \frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%20%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = ?
t = time taken = 1.52 hrs
= Initial concentration of reactant = 100 g
[A] = Concentration of reactant left after time 't' = [100 - 27.3] = 72.7 g
Putting values in above equation, we get:

To calculate the half life period of first order reaction, we use the equation:

where,
= half life period of first order reaction = ?
k = rate constant = 
Putting values in above equation, we get:

Hence, the half life of the sample of silver-112 is 3.303 hours.
Answer:
Explanation:
1 Mole of Aluminum with mass 26.98g contains 6.02*10^23 atoms.
In 2.88g of Aluminum, there are 2.88/26.98*6.02*10^23 = 6.426*10^22 atoms.