"if it is tested in a controlled setting with repeated results" is the statement among the choices given in the question that best describes that can possibly make this scientific claim valid. The correct option among all the options that are given in the question is the first option or option "A". I hope the answer has helped you.<span>
</span>
Answer:
Mass = 0.37 g
Explanation:
Given data:
Number of moles of sulfur = 11.9 mol
Mass of sulfur in 11.9 mol = ?
Molar mass of sulfur = 32.06 g
Solution:
Number of moles = mass/molar mass
by putting values,
11.9 mol = mass/ 32.06 g/mol
Mass = 11.9 mol × 32.06 g/mol
Mass = 0.37 g
Answer:
ΔS = +541.3Jmol⁻¹K⁻¹
Explanation:
Given parameters:
Standard Entropy of Fe₂O₃ = 90Jmol⁻¹K⁻¹
Standard Entropy of C = 5.7Jmol⁻¹K⁻¹
Standard Entropy of Fe = 27.2Jmol⁻¹K⁻¹
Standard Entropy of CO = 198Jmol⁻¹K⁻¹
To find the entropy change of the reaction, we first write a balanced reaction equation:
Fe₂O₃ + 3C → 2Fe + 3CO
To calculate the entropy change of the reaction we simply use the equation below:
ΔS = ∑S
- ∑S
Therefore:
ΔS = [(2x27.2) + (3x198)] - [(90) + (3x5.7)] = 648.4 - 107.1
ΔS = +541.3Jmol⁻¹K⁻¹
<span>This is called "The capture theory" which states that the Earth's Moon was captured by the gravitational pull of our planet, meaning that it formed elsewhere, and then was pulle dinto place by the Earth, already formed. This would rely upon the ideas that a asteroid pased close enough to the Earth's orbit to be "captured".</span>