According to markovnikov's rule of the electrophilic addition to an alkene, the electrophile, usually a proton, is more likely to add to the less-substituted carbon in a double bond.
With additional substituents present in this configuration, the intermediate carbocation is stabilised by being located on the more-substituted carbon.
The nucleophile will then end up in a double bond on the more-substituted carbon in a reaction that follows Markovnikov's rule.The outcome of some addition reactions is described by Markovnikov's rule or Markownikoff's rule in organic chemistry. Vladimir Markovnikov, a Russian scientist, created the rule in 1870.
To learn more about Markovnikov's rule
brainly.com/question/14529644
#SPJ4
Answer:
Both answer choice 2 and answer choice 3 are correct choices.
Explanation:
Biotic factors are living components in an ecosystem. They are living organisms which affect another living component in an ecosystem.
Antibiotic factors are non living components of an ecosystem. They are chemicals which affect living organisms.
The choice 2 is correct. The seeds spread out by mice is a biotic factor interacting with an antibiotic factor
Choice 3 is correct. The seeds in the soil grow into new trees are biotic factors interacting with an antibiotic factor
Answer:
have you tried c
Explanation:
the chicken and I don't know if you can make it
Answer:
Explanation:
The two requirements for a measurement are a <u>number</u> and a <u>unit.</u>
For example, here is a measurement:
38.6 cm
The <u>number</u> is 38.6 and the <u>unit</u> is cm, or centimeters.
Therefore, both <em>number </em>and <em>unit</em> are correct.
PH scale is used to determine how acidic or basic a solution is.
we have been given the hydrogen ion concentration. Using this we can calculate pH,
pH = - log[H⁺]
pH = - log (1 x 10⁻¹ M)
pH = 1
using pH can calculate pOH
pH + pOH = 14
pOH = 14 - 1
pOH = 13
using pOH we can calculate the hydroxide ion concentration
pOH = - log [OH⁻]
[OH⁻] = antilog(-pOH)
[OH⁻] = 10⁻¹³ M
hydroxide ion concentration is 10⁻¹³ M