1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zigmanuir [339]
3 years ago
9

A ruby laser delivers a 16.0-ns pulse of 4.20-MW average power. If the photons have a wavelength of 694.3 nm, how many are conta

ined in the pulse
Physics
1 answer:
stepan [7]3 years ago
4 0

Answer:

The  value is  n  =  2.347 *10^{17} \  photons

Explanation:

From the question we are told that

     The  amount of power delivered is  P  =  4.20 \  M W  =  4.20  *10^{6} \  W

      The  time taken is  t =  16.0ns  =  16.0 *10^{-9} \  s

       The  wavelength is  \lambda  =  694.3 \  nm =  694.3 *10^{-9} \  m

     

Generally the energy delivered is  mathematically represented as

     E  =  P  * t  =  \frac{n  *  h  *  c  }{\lambda }

Where  h is the Planck's constant with value  h  =  6.262  *10^{-34} \  J \cdot  s

           c  is the speed of light with value  c =  3.0*10^{8} \  m/s

     

So  

    4.20 *10^{6}  *  16*10^{-9}=  \frac{n  *  6.626 *10^{-34}  *  3.0*10^{8}  }{694.3 *10^{-9}}

=>    n  =  2.347 *10^{17} \  photons

You might be interested in
If you increase the weight of an object, the frictional force increases but the coefficient does not change why
aleksandr82 [10.1K]

Answer:

The coefficient of friction should in the majority of cases, remain constant no matter what your normal force is. When you apply a greater normal force, the frictional force increases, and your coefficient of friction stays the same. Here's another way to think about it: because the force of friction is equal to the normal force times the coefficient of friction, we expect (in theory) an increase in friction when the normal force is increased.

One more thing, the coefficient of friction is a property of the materials being "rubbed", and this property usually does not depend on the normal force

8 0
2 years ago
According to the first law of thermodynamics, what could happen when heat is added to a system?
Burka [1]
B, since B claims that the heat is transferred, while A and D have energy decreasing or being destroyed and C has energy being created. First law of thermodynamics in layman terms: Energy can neither be created nor destroyed
8 0
3 years ago
Read 2 more answers
Projectile Motion
lakkis [162]

Answer:

a)  F = (m / t₀) 95.33

 b)  θ = 70.5º

Explanation:

This is a projectile launch, as they indicate the horizontal distance this is the range of the body,  let's use the expression for the range of the projectiles

            R = v₀² sin 2θ / g

            v₀² sin 2θ = R g

Where the range is  550.46 m

They also indicate the time that the air must remain, so this time is twice the time until reaching the maximum height.

        v_{y} = v_{oy} - g t

At the maximum height v_{y} = 0 and the initial speed on the axis and we can find it with trigonometry

         sin θ = v_{oy} / v_{o}

         v_{oy} = v_{o} sin θ

         v_{o} sin θ = g t

Let's write the two equations

             v_{oy}² sin 2θ = g R

             v_{o} sin θ = g t

 We solve our accusation system

              (G t / sin θ) 2 sin 2θ = g R

              g t² sin 2θ = R sin  θ

               

Let's use the trigonometric relationship

         sin 2θ = 2 sin θ cos θ

We substitute

           g t² (2 sin θ cos θ) = R sin θ

             

          Cos tea = R / 2 g t²

          θ = cos⁻¹ (R / 2g t²)

Let's calculate

          θ = cos⁻¹ (550.46 / (2  9.8  9.17² ))

          θ = 70.5º

a) Force can be  Newton's second law

On the x axis the speed is constant so the force on the axis is zero

In the y axis the acceleration we have is the acceleration of gravity, so the force that acts throughout the journey is the weight of the body.

To place the body in the air from the rest we can use the equation of the impulse

          F t = Δp = m v - m v₀

As kick from rest   v₀ = 0

           

Let's find the speed of the body

         v_{oy} = g t

          v_{o} = g t / sin 70.5

         v_{o} = 9.8 9.17 / sin 70.5

         v_{o} = 95.33 m / s

To encocorate the force we must suppose a firing time, which in general is very short, suppose that this time is to

           F = m v_{o} / t₀

           F = (m / t₀) 95.33

This is the outside that should be applied, as an example suppose a body of mass 1 kg⁵ ( m = 1 kg) and a trip time to = 0.1 s

           F = (1 / 0.1) 95.33

          F = 953.3 N

7 0
3 years ago
PLSSSSSSSS SOMEONE HELP ME WITH THIS ONE!!
zloy xaker [14]

Answer:

D

Explanation:

At the other end of the spectrum toward red, the wavelengths are longer and have lower energy.

8 0
3 years ago
Which statement is true of forces?
jasenka [17]
FORCES HAVE  STRENGTH AND DIRECTION 
8 0
3 years ago
Other questions:
  • un esquiador parte del reposo y se desliza pendiente abajo recorriendo 9m en 3s, con una aceleración constante calcular acelerac
    14·1 answer
  • Using aluminum wire(2.82x10^-8 ohm) of diameter 1.60mm, you want to wind a resistor that will dissipate 25.0 W when 25.0 V is ap
    7·1 answer
  • What is the name of a scientist that studies the Movment of living things?
    8·1 answer
  • A uniform brick of length 25 m is placed over
    11·1 answer
  • If we approximate the rack to be completely flat and the racecar is travelling a constant 30.5 m/s around the turn, what forces
    14·1 answer
  • WILL GIVE BRAINLIEST! THANK YOU :)
    5·1 answer
  • 1. What is the primary difference between an ideal emf device and a real emf device? a) The electric potential of a real emf dev
    10·1 answer
  • Determine the increase in volume of 100m3 of mercury when it's temperature change from 10c to 45c the linear expansion coefficie
    15·1 answer
  • The critical angle for a substance is measured at 53.7 degrees. Light enters from air at 45.0 degrees. At what angle it will con
    13·1 answer
  • Suppose the sphere is positively charged. Is it attracted to, repelled by, or not affected by the magnet?.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!