Answer:
Fossil Combustion Reactions
Explanation:
It's more efficient (I'll edit later)
Answer:
e = Δφ / Δt induced emf is proportional to enclosed flux
Also φ = B * A flux is proportional to area and enclosed field
If the induced emf e increases with time than the flux and hence the magnetic field is increasing with time (replace B with G)
Since e = ΔG * A / Δt if e is linear then G must also be linear and be proportional to the time
Answer:
F' = (3/2)F
Explanation:
the formula for the electric field strength is given as follows:
E = F/q
where,
E = Electric Field Strength
F = Force due to the electric field
q = magnitude of charge experiencing the force
Therefore,
F = E q ---------------- equation (1)
Now, if we half the electric field strength and make the magnitude of charge triple its initial value. Then the force will become:
F' = (E/2)(3 q)
F' = (3/2)(E q)
using equation (1)
<u>F' = (3/2)F</u>
The available options are:
Mint is a dicot.
Mint is a monocot.
Mint is an angiosperm.
Mint is a bulb plant.
Answer:
Mint is a dicot.
Explanation:
Given the fact that Mint is considered to be a member of Lamiaceae, an angiosperm plant which is characterized by typically having leaves that consist of reticulate vacation and appears like veins in structure. It also has a seed that contains two cotyledons.
Hence, it is considered a DICOT PLANT due to these characteristics. The botanical name of Mint is referred to as Mentha arvensis.
Answer:
The specific question is not stated, however the general idea is given in the attached picture. The electric field in each region can be found by Gauss’ Law.
at r < R:
Since the solid sphere is conducting, the total charge Q is distributed over the surface, and the electric field inside the sphere is zero.
E = 0.
at R < r < 2R:
The electric field can be found by Gauss’ Law as in the attachment. The green pencil shows this exact region.
at 2R < r:
The electric field can again be found by Gauss’ Law, the blue pencil shows the calculations for this region.
Explanation:
Gauss’ Law is straightforward when applied to spheres. The area of the sphere is , and the enclosed charge is given in the question as Q for the inner sphere, and 2Q for the whole system.