<u>Answer:</u>
<em>0.264 g of
can be formed from 288 mg of
</em>
<u>Explanation:</u>
The balanced chemical equation is

The conversions are
Mass in mg
is converted to mass in g
Mass in g
is converted to moles
by dividing with molar mass
Moles
is converted to moles
by using the mole ratio of
is 9 : 6
Moles
is converted to mass
by multiplying with molar mass 
mass in mg
> mass in g
>moles
> moles
> mass 

=0.264g (Answer)
Answer:
uh.. How many do you want done??
Explanation:
Answer:
They reduce the bond angle to be slightly lower than the tetrahedral bond angle, approximately 104.45 degrees.
Explanation:
The unshared pair of electrons or lone pair electrons in order to have the minimum repulsion possible with each other pushes the other bonding pairs closer together making the bond angle smaller or bent.
The bond angle is slightly lower than the tetrahedral bond angle of 108 degrees, leaving the water molecule with a bent molecular geometry.
False there are different configurations of atoms called isotopes
Answer:
0.189 g.
Explanation:
- This problem is an application on <em>Henry's law.</em>
- Henry's law states that the solubility of a gas in a liquid is directly proportional to its partial pressure of the gas above the liquid.
- Solubility of the gas ∝ partial pressure
- If we have different solubility at different pressures, we can express Henry's law as:
<em>S₁/P₁ = S₂/P₂,</em>
S₁ = 0.0106/0.792 = 0.0134 g/L and P₁ = 0.321 atm
S₂ = ??? g/L and P₂ = 5.73 atm
- So, The solubility of the gas at 5.73 atm (S₂) = S₁.P₂/P₁ = (0.0134 g/L x 5.73 atm) / (0.321 atm) = 0.239 g/L.
<em>The quantity in (g) = S₂ x V = (0.239 g/L)(0.792 L) = 0.189 g.</em>
<em></em>