1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
azamat
3 years ago
7

Which quadratic equation is equivalent to (x+2)^2+5(x+2)-6=0

Mathematics
2 answers:
Debora [2.8K]3 years ago
7 0

Answer:

x^2+11x+24 =0

Step-by-step explanation:

(x+2)^2+5(x+2)-6=0

Substitute

x+2 =y

y^2+5y-6=0\\(y+6)(y-1)=0\\y=-6,1

Now replace y by x values

x+2=-6\\x=-8\\x+2=-1\\x=-3

Roots are -3 and -8

The equivalent equation would be

(x+3)(x+8) =0\\x^2+11x+24 =0

Elis [28]3 years ago
5 0
X^2 + 9x + 8 = 0

You can get this by multiplying and foiling, then simplifying. 
You might be interested in
Casey ran out of time while taking a multiple-choice test and plans to guess on the last 101010 questions. Each question has 555
Soloha48 [4]

Answer:

There is a 40.96% probability that he answers exactly 1 question correctly in the last 4 questions.

Step-by-step explanation:

For each question, there are only two possible outcomes. Either it is correct, or it is not. This means that we use the binomial probability distribution to solve this problem.

Binomial probability distribution

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which  is the number of different combinatios of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.

In this problem we have that:

There are four questions, so n = 4.

Each question has 5 options, one of which is correct. So  

What is the probability that he answers exactly 1 question correctly in the last 4 questions?

This is  

There is a 40.96% probability that he answers exactly 1 question correctly in the last 4 questions.

7 0
3 years ago
Read 2 more answers
Find any points of discontinuity for the rational function. y=x-5/x^2-7x-8
kotegsom [21]
For discontinuity of the function:
x² - 7 x - 8 ≠ 0
x² - 8 x + x - 8 = 0
x ( x - 8 ) + ( x - 8 ) ≠ 0
( x - 8 ) ( x + 1 ) ≠ 0
The points of discontinuity are: x = - 1 and x = 8.
As for the Domain of the function:
x ∈ ( - ∞, - 1 ) ∪ ( - 1 , 8 ) ∪ ( 8, +∞ ). 
3 0
3 years ago
Read 2 more answers
Which is greater,3/4 11/16. Explain your answer
Tema [17]
3/4's obviously because the percentage is bigger.
7 0
3 years ago
Read 2 more answers
What is the row echelon form of this matrix?
USPshnik [31]

The row echelon form of the matrix is presented as follows;

\begin{bmatrix}1 &-2  &-5  \\ 0& 1 &  -7\\ 0&0  &1  \\\end{bmatrix}

<h3>What is the row echelon form of a matrix?</h3>

The row echelon form of a matrix has the rows consisting entirely of zeros at the bottom, and the first entry of a row that is not entirely zero is a one.

The given matrix is presented as follows;

\begin{bmatrix}-3 &6  &15  \\ 2& -6 &  4\\ 1&0  &-1  \\\end{bmatrix}

The conditions of a matrix in the row echelon form are as follows;

  1. There are row having nonzero entries above the zero rows.
  2. The first nonzero entry in a nonzero row is a one.
  3. The location of the leading one in a nonzero row is to the left of the leading one in the next lower rows.

Dividing Row 1 by -3 gives:

\begin{bmatrix}1 &-2  &-5  \\ 2& -6 &  4\\ 1&0  &-1  \\\end{bmatrix}

Multiplying Row 1 by 2 and subtracting the result from Row 2 gives;

\begin{bmatrix}1 &-2  &-5  \\ 0& -2 &  14\\ 1&0  &-1  \\\end{bmatrix}

Subtracting Row 1 from Row 3 gives;

\begin{bmatrix}1 &-2  &-5  \\ 0& -2 &  14\\ 0&2  &4  \\\end{bmatrix}

Adding Row 2 to Row 3 gives;

\begin{bmatrix}1 &-2  &-5  \\ 0& -2 &  14\\ 0&0  &18  \\\end{bmatrix}

Dividing Row 2 by -2, and Row 3 by 18 gives;

\begin{bmatrix}1 &-2  &-5  \\ 0& 1 &  -7\\ 0&0  &1  \\\end{bmatrix}

The above matrix is in the row echelon form

Learn more about the row echelon form here:

brainly.com/question/14721322

#SPJ1

8 0
1 year ago
Find the domain of the function y = 3 tan(2/3x)
Damm [24]

Answer:

{x∈R | \frac{2x}{3\pi } +\frac{1}{2}, x∉Z}

Step-by-step explanation:

Given the function y=3tan(2/3x)

We know that tangent is a function that's continuous within it's domain but not continuous on all real numbers

Also, the roots of y=3tan(2/3x) is 3\pi n/2 where n is an integer

Note that the domain of the function cannot be within 3\pi n/2

Therefore, {x∈R | \frac{2x}{3\pi } +\frac{1}{2}, x∉Z}

5 0
2 years ago
Other questions:
  • Please help with these questions thank you very much.
    14·2 answers
  • Nellie has a watering can that contains 20 cups of water.She pours one quart of water on each plant in her yard.If Nellie uses a
    10·1 answer
  • Divide 6x3 + 1 − 14x by 3x + 6.
    8·1 answer
  • Y=x² - 6x + 7 in quadratic vertex form (no need to show work)
    14·1 answer
  • A large university accepts 70% of the students who apply. Of the students the university accepts, 30% actually enroll. If 30,000
    5·1 answer
  • Please help!!<br> What is the measure of angels DEF and angles DEG?
    10·1 answer
  • Determine a series of transformations that would map Figure L onto Figure M.
    6·1 answer
  • Find the reference angle for a rotation of 347º.
    10·1 answer
  • 2H20 1) How many hydrogen atoms are represented by this much water? A) 1 B) 2 0.4 D) 6​
    7·1 answer
  • Three pupils are given some books to share among themselves. Molly receives 772 books, which is 345 more than Marie. Marie recei
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!