Reaction: 2K₍s₎ + 2H₂O₍l₎ → 2KOH₍aq₎ + H₂₍g₎.
K - potassium.
H₂O - water.
KOH - potassium-hydroxide.
H₂ - hydrogen.
s - solid phase.
l - liquid.
aq - disolves in water.
g - gas.
Reaction is exothermal (release of energy) and potassium burns a purple flame. H<span>ydrogen released during the reaction reacts with </span>oxygen<span> and ignites.</span><span>
</span>
Answer:
0.00757 grams
Explanation:
Find the molar mass of the compound: which is 60.05.
The molar mass is basically just the sum of all the atomic masses of each of the elements.
Then multiply the molar mass by the number of moles in the compound, which is 1.26 x 10^-4 moles.
Your answer should be 0.00757 grams.
To Find :
The volume of 12.1 moles hydrogen at STP.
Solution :
We know at STP, 1 mole of gas any gas occupy a volume of 22.4 L.
Let, volume of 12.1 moles of hydrogen is x.
So, x = 22.4 × 12.1 L
x = 271.04 L
Therefore, the volume of hydrogen gas at STP is 271.04 L.
Answer:
90.35 × 10²³ atoms
Solution:
1 molecules of H20 contains 3 atoms,.
And we know that one mole of any molecule contains 6.023 × 10²³ atoms from Avogadro's number,
hence 5 moles of H20 will contain = 5× 6.023 × 10²³ × 3 atoms = 90.35 × 10²³ atoms!
<em><u>Thanks for joining brainly community!</u></em>
Answer:
the answer of this question is true