Answer:
Neodymium makes flints inside of lighters. It also takes away the green color off of glass. Rhenium is added with tungsten and molybdenum which makes filaments for lamps. Sulfur makes sulfuric acid which makes batteries and cleaners and can process ores.
Explanation:
An interesting fact for each element:
Neodymium is known for the atomic symbol Nd and the atomic number 60.
Rhenium is known for the atomic symbol Re and the atomic number 75.
Sulfur is known for the atomic symbol S and the atomic number 16.
I hope the Answer answers your question. I gave you some facts to remember those elements in the periodic table!
The mass of the ice cubes and the water will be equal because the same amount of matter is in the beaker.
Matter is anything that has mass and occupy space. All substances are composed of matter. According to the law of conservation of mass, matter can neither be created nor destroyed but can be converted from one form to another.
Since mass is the quantity of matter in a substance, the mass of the ice cubes and the water will be equal because the same amount of matter is in the beaker.
Learn more: brainly.com/question/25150590
Explanation:
there you go you can just look up atomic model for CD and click images
Given:
175 kilograms of Methane (CH4) to be synthesized into Hydrogen Cyanide (HCN)
The balanced chemical equation is shown below:
2 CH4<span> + 2 NH</span>3<span> + 3 O</span>2<span> → 2 HCN + 6 H</span>2<span>O
</span>
To calculate for the masses of ammonia and oxygen needed, our basis will be 175 kg CH4.
Molar mass:
CH4 = 16 kg/kmol
NH3 = 17 kg/kmol
O2 = 32 kg/kmol
mass of NH3 = 175 kg CH4 / 16 kg/kmol * (2/2) * 17 kg/kmol
mass of NH3 = 185.94 kg NH3 needed
mass of O2 = 175 kg CH4 / 16 kg/kmol * (3/2) * 32 kg/kmol
mass of O2 = 525 kg
mass of O = 525 kg / 32 kg/kmol * (1/2) * 16 kg/kmol
mass of O = 131.25 kg O
The grams of oxygen that are required to produce 1 mole of H₂O is 16 g ( answer B)
<u><em> calculation</em></u>
2 CH₄ + 2NH₃ +3 O₂ → 2HCN + 6H₂O
step 1: use the mole ratio to find moles of O₂
from equation above the mole ratio of O₂: H₂O is 3:6 therefore the moles of O₂ = 1 mole x3/6 =0.5 moles
step 2: find mass of O₂
mass= moles x molar mass
from periodic table the molar mass of O₂ = 16 x2= 32 g/mol
mass O₂ = 0.5 moles x 32 g/mol = 16 g (answer B)