Answer:
Explanation:
A 12.48 g sample of an unknown metal, heated to 99.0 °C was then plunged into 50.0 mL of 25.0 °C water. The temperature of the water rose to 28.1 Go to calculating final temperature when mixing two samples of water ... Problem #1: A 610. g piece of copper tubing is heated to 95.3 °C and placed in an ... The two rings are heated to 65.4 °C and dropped into 12.4 mL of water at 22.3 °C. ... Problem #4: A 5.00 g sample of aluminum (specific heat capacity = 0.89 J g¯1
Answer:
A 50-mL volumetric cylinder with 0.1-mL accuracy scale should be used for this purpose since three significant figures of accuracy are required.
Explanation:
Hello,
A 50-mL volumetric cylinder with 0.1-mL accuracy scale should be used for this purpose since three significant figures of accuracy are required.
Best regards.
The higher the current, the more likely it is lethal. Since current is proportional to voltage when resistance is fixed (ohm's law), high voltage is an indirect risk for producing higher currents.
Well, i checked my cereal box and it says "net wait g (500)" so it's probably Grams
Answer = (C.) g