Answer:
Half life is the time taken by a radio active isotope to reduce by half of its original amount. Radium-226 has a half life of 1602 years meaning that it would take 1602 years for a mass of radium to reduce by half.
Number of half lives in 9612 years = 9612/1602 = 6 half lives
New mass = Original mass x (1/2)n where n is the number of half lives.
Therefore, New mass= 500 x (1/2)∧6
= 500 x 0.015625
= 7.8125 g
Hence the mass of radium after 9612 years will be 7.8125 grams.
Explanation:
Answer:
0.0468 g.
Explanation:
- The decay of radioactive elements obeys first-order kinetics.
- For a first-order reaction: k = ln2/(t1/2) = 0.693/(t1/2).
Where, k is the rate constant of the reaction.
t1/2 is the half-life time of the reaction (t1/2 = 1620 years).
∴ k = ln2/(t1/2) = 0.693/(1620 years) = 4.28 x 10⁻⁴ year⁻¹.
- For first-order reaction: <em>kt = lna/(a-x).</em>
where, k is the rate constant of the reaction (k = 4.28 x 10⁻⁴ year⁻¹).
t is the time of the reaction (t = t1/2 x 8 = 1620 years x 8 = 12960 year).
a is the initial concentration (a = 12.0 g).
(a-x) is the remaining concentration.
∴ kt = lna/(a-x)
(4.28 x 10⁻⁴ year⁻¹)(12960 year) = ln(12)/(a-x).
5.54688 = ln(12)/(a-x).
Taking e for the both sides:
256.34 = (12)/(a-x).
<em>∴ (a-x) = 12/256.34 = 0.0468 g.</em>
The answer is diagram A.
Hope this helped. Good luck!