Answer:
1.274.
Explanation:
- Thomas Graham found that, at a constant temperature and pressure the rates of effusion of various gases are inversely proportional to the square root of their masses.
<em>∨ ∝ 1/√M.</em>
where, ∨ is the rate of diffusion of the gas.
M is the molar mass of the gas.
<em>∨₁/∨₂ = √(M₂/M₁)</em>
∨₁ is the rate of effusion of the methane.
∨₂ is the rate of effusion of acetylene gas.
M₁ is the molar mass of methane (M₁ = 16.0 g/mol).
M₂ is the molar mass of acetylene (M₂ = 26.0 g/mol).
<em>∴ The rate of effusion of methane, CH₄, relative to the rate of effusion of acetylene, C₂H₂ = ∨₁/∨₂ = √(M₂/M₁) </em>= √(26.0 g/mol)/(16.0 g/mol) = <em>1.274.</em>
This problem is providing us with the maximum mass of Imitrex a patient can get daily as 0.2 g. Also, the mass of a tablet is given as 25 mg so the number of tablets they get in a day is required. After the calculations, the result turns out to be 10 tablets.
<h3>Dimensional analysis:</h3>
In chemistry, dimensional analysis is used to calculate specific outcomes given useful information to do so. Despite not having specific formulas for every problem, one can come up with a feasible proportional-factor-based setup, in order to obtain the required.
In this case, since the mass per tablet is 25 mg, one can divide the maximum dosage by this mass per tablet, both in grams, to obtain the required number of tablets for a daily dosage:

Learn more about dimensional analysis: brainly.com/question/10874167
Answer:
I believe the molecular formula is MnBr2·4H2O or Br2H8MnO4
Explanation: