Answer:
hagcsgdufgeuwuwgsgwhajisydcbeek
Explanation:
edowooooooww
The motion of the racers might change from the start because the pressure goes up so all the racer wants is to speed up and win, so when the racer first starts he or she is calm because he's not driving yet and when he or she is on his/hers way to he finish line he/she just wants to win and gets under pressure so he speeds up even more and drifts. Your welcome
As you know, plants are usually green<span>, which means that most other colors are absorbed. One of the most common pigments is called chlorophyll, and one of the varieties is responsible for the </span>green<span> color of plants; it strongly absorbs </span>blue<span> and </span>red<span>light, which leaves only the </span>green<span> light to make it to our eyes.</span>
Answer:
a
The radial acceleration is 
b
The horizontal Tension is 
The vertical Tension is 
Explanation:
The diagram illustrating this is shown on the first uploaded
From the question we are told that
The length of the string is 
The mass of the bob is 
The angle made by the string is 
The centripetal force acting on the bob is mathematically represented as

Now From the diagram we see that this force is equivalent to
where T is the tension on the rope and v is the linear velocity
So

Now the downward normal force acting on the bob is mathematically represented as

So

=> 
=> 
The centripetal acceleration which the same as the radial acceleration of the bob is mathematically represented as

=> 
substituting values


The horizontal component is mathematically represented as

substituting value

The vertical component of tension is

substituting value

The vector representation of the T in term is of the tension on the horizontal and the tension on the vertical is

substituting value
![T = [(0.3294) i + (3.3712)j ] \ N](https://tex.z-dn.net/?f=T%20%20%3D%20%5B%280.3294%29%20i%20%20%2B%20%283.3712%29j%20%5D%20%5C%20%20N)
The words "... as shown ..." tell us that there's a picture that goes along
with this question, and you decided not to share it. That's sad and
disappointing, but I think the question can be answered without seeing
the picture.
The net force on the crate is zero. Evidence for this is that fact that
the crate is just sitting there. If the net force on an object is not zero,
then the object is accelerating ... it's either speeding up, slowing down,
or its the direction of its motion is changing. If none of these things is
happening, then the net force on the object must be zero.