Answer:
Explanation:
Acceleration is the time rate of change of velocity.
Acceleration and velocity are vectors
If east and north are the positive directions, the east moving vector is reduced to zero and the north moving vector increases from zero to 4 m/s.
There are 3 hours or 10800 seconds between 10 AM and 1 PM
a1 = √((-4)² + 4²) / 10800 = (√32) / 10800 m/s² ≈ 4.2 x 10⁻⁴ m/s²
There are 14400 seconds between 10 AM and 2 PM
The velocity changes are still the same
a2 = √((-4)² + 4²) / 10800 = (√32) / 14400 m/s² ≈ 3.9 x 10⁻⁴ m/s²
Answer:
c
Explanation:
the moon moves around earth
Answer:
Wave A
<em>I</em><em> </em><em>hope this</em><em> </em><em>helps</em><em> </em>
Answer:
a) P = 1240 lb/ft^2
b) P = 1040 lb/ft^2
c) P = 1270 lb/ft^2
Explanation:
Given:
- P_a = 2216.2 lb/ft^2
- β = 0.00357 R/ft
- g = 32.174 ft/s^2
- T_a = 518.7 R
- R = 1716 ft-lb / slug-R
- γ = 0.07647 lb/ft^3
- h = 14,110 ft
Find:
(a) Determine the pressure at this elevation using the standard atmosphere equation.
(b) Determine the pressure assuming the air has a constant specific weight of 0.07647 lb/ft3.
(c) Determine the pressure if the air is assumed to have a constant temperature of 59 oF.
Solution:
- The standard atmospheric equation is expressed as:
P = P_a* ( 1 - βh/T_a)^(g / R*β)
(g / R*β) = 32.174 / 1716*0.0035 = 5.252
P = 2116.2*(1 - 0.0035*14,110/518.7)^5.252
P = 1240 lb/ft^2
- The air density method which is expressed as:
P = P_a - γ*h
P = 2116.2 - 0.07647*14,110
P = 1040 lb/ft^2
- Using constant temperature ideal gas approximation:
P = P_a* e^ ( -g*h / R*T_a )
P = 2116.2* e^ ( -32.174*14110 / 1716*518.7 )
P = 1270 lb/ft^2
A Atom is the basic unit of each type of element