The kinetic energy before equals K after
Answer:
3 x 10^5 J
Explanation:
mass of substance, m = 1 g = 0.001 kg
Velocity of light, c = 3 x 10^8 m/s
According to the Einstein mass energy equivalence, the energy associated with the mass is given by
E = m c^2
E = 0.001 x 3 x 10^8
E = 3 x 10^5 J
The answer is C. that liquids and gases both take the shape of their container.
Think of it this way, if you take an ice cube and put it in your glass, it will stay in its shape and stay that way until it melts. But if you put liquid or a gas into a glass, it will take the shape of the glass that it is put into.
Answer:
It is Gregor Mendel because he was a Catholic Augustinian monk and naturalist
Explanation:
Answer:
Option D is correct: 170 µW/m²
Explanation:
Given that,
Frequency f = 800kHz
Distance d = 2.7km = 2700m
Electric field Eo = 0.36V/m
Intensity of radio signal
The intensity of radial signal is given as
I = c•εo•Eo²/2
Where c is speed of light
c = 3×10^8m/s
εo = 8.85 × 10^-12 C²/Nm²
I = 3×10^8 × 8.85×10^-12 × 0.36²/2
I = 1.72 × 10^-4W/m²
I = 172 × 10^-6 W/m²
I = 172 µW/m²
Then, the intensity of the radio wave at that point is approximately 170 µW/m²