1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Setler79 [48]
2 years ago
7

I know how the voltage increasing/not enough/stays the same and how long the battery lasts with series and parallel connections.

But can someone explain the path electrons goes when you serie/parallel connect the batteries. I understand it with lamps but not batteries. Try to explain it as simple as possible because I'm a bit too young for this but I'm curious
Physics
1 answer:
kirill [66]2 years ago
3 0

Answer:

It comes out the positive side of the battery and goes in to the negative side of the battery

Explanation:

There are already electrons in wires in a circuit before you add the battery. By adding the battery, you're giving the electrons the energy it needs to move along the circuit.

In a series circuit, the circuit is one continuous loop so there is only one path for the electrons to go - out of the positive side of the battery and around the circuit then goes back into the negative side of the battery.

However, with a parallel circuit, there are two or more ways the electrons can go so they take the path of least resistance. The electrons still go out the positive side of a battery but along the circuit, the electrons will go through the path of least resistance ( I tend to think of it like a net with holes in it - the lower the resistance the bigger the holes for the electrons to go through so more can fit in a set amount of time ) but the electrons still go out of the positive side and in through the negative

You might be interested in
A runner drank a lot of water during a race. What is the expected path of the extra filtered water molecules?
Naddika [18.5K]

Answer:

Afferent arteriole, glomerulus, nephron tubule, collecting duct

Explanation:

Blood enters the kidney through the renal artery, a thick branch from the descending aorta. In the hilum, it is divided into several branches that are distributed through the lobes of the kidney and are branching forming numerous afferent arterioles that form the glomerular clew. It is precisely the walls of these capillaries that act as ultrafilters, allowing small particles to pass through.

Blood that flows through the <u>afferent arteriole</u> circulates through the capillary vessels of the kidney (the true capillaries that provide the kidney with oxygen and nutrients necessary for its function). These capillaries are grouped together to form the renal vein which, in turn, pours into the inferior vena cava.

Given the function of the kidneys to eliminate waste products through urine, it is not surprising that these organs are the ones that receive the most blood per gram of weight. One way to express renal blood flow is by considering the renal fraction or fraction of cardiac output that passes through the kidneys.

The regulation of blood flow in the glomeruli is achieved by three formations: the polar bearing, the Goormaghtigh cells and the dense macula. The polar bearing consists of a thickening of the afferent arteriole wall before it enters the <u>renal glomerulus</u>. The arteriole loses its elastic membrane, the endothelium becomes discontinuous and the middle tunic is arranged in two layers, formed by secretory cells: these secretory cells produce Angiotensin and Erythropoietin.

Goormaghtigh cells are arranged at an angle between afferent and effector arterioles and meet in small columns. They are closely related to polar bearing cells. Between both formations is the dense macula (or Zimmerman's dense macula) that is in contact with the distal tubule and afferent arteriole just before it penetrates the glomerulus. These three formations, polar bearing, Goormaghtigh cells and dense macula form the juxtaglomerular apparatus that regulates the blood flow in the glomerulus.

<u>Nephrons</u> regulate water and soluble matter (especially Electrolytes) in the body, by first filtering the blood under pressure, and then reabsorbing some necessary fluid and molecules back into the blood while secreting other unnecessary molecules.

The reabsorption and secretion are achieved with the mechanisms of Cotransporte and Contratransporte established in the nephrons and associated collection ducts. Blood filtration occurs in the glomerulus, a capping of capillaries that is inside a Bowman's capsule.

Liquid flows from the nephron in the <u>collecting duct</u> system. This segment of the nephron is crucial to the process of water conservation by the body. In the presence of the antidiuretic hormone (ADH; also called vasopressin), these ducts become water permeable and facilitate their reabsorption, thus concentrating the urine and reducing its volume. Conversely, when the body must remove excess water, for example after drinking excess fluid, ADH production is decreased and the collecting tubule becomes less permeable to water, making the urine diluted and abundant.

6 0
3 years ago
A truck covers 47.0 m in 8.60 s while smoothly slowing down to final speed of 2.30 m/s. (a) Find its original speed.
Kruka [31]

Explanation:

Given that,

Distance, s = 47 m

Time taken, t = 8.6 s

Final speed of the truck, v = 2.3 m/s

Let u is the initial speed of the truck and a is its acceleration such that :

a=\dfrac{v-u}{t}.............(1)

Now, the second equation of motion is :

s=ut+\dfrac{1}{2}at^2

Put the value of a in above equation as :

s=ut+\dfrac{1}{2}\times \dfrac{v-u}{t}\times t^2

s=\dfrac{t(u+v)}{2}

u=\dfrac{2s}{t}-v

u=\dfrac{2\times 47}{8.6}-2.3

u = 8.63 m/s

So, the original speed of the truck is 8.63 m/s. Hence, this is the required solution.

8 0
3 years ago
A uniform stick 1.5 m long with a total mass of 250 g is pivoted at its center. A 3.3-g bullet is shot through the stick midway
Andru [333]

Answer:

<em>63.44 rad/s</em>

<em></em>

Explanation:

mass of bullet = 3.3 g = 0.0033 kg

initial velocity of bullet v_{1} = 250 m/s

final velocity of bullet v_{2} = 140 m/s

loss of kinetic energy of the bullet = \frac{1}{2}m(v^{2} _{1} - v^{2} _{2})

==> \frac{1}{2}*0.0033*(250^{2}  - 140^{2} ) = 70.785 J

this energy is given to the stick

The stick has mass = 250 g =0.25 kg

its kinetic energy = 70.785 J

from

KE = \frac{1}{2} mv^{2}

70.785 = \frac{1}{2}*0.25*v^{2}

566.28 = v^{2}

v= \sqrt{566.28} = 23.79 m/s

the stick is 1.5 m long

this energy is impacted midway between the pivot and one end of the stick, which leaves it with a radius of 1.5/4 = 0.375 m

The angular speed will be

Ω = v/r = 23.79/0.375 =<em> 63.44 rad/s</em>

5 0
3 years ago
When are tides highest? a. during the moon’s first quarter phase b. when the sun, Earth, and the moon are nearly in a line c. du
elena-14-01-66 [18.8K]
<span>Ocean tides are highest when the sun, Earth, and the moon
are nearly in a line.  That means at the times of New Moon
and Full Moon.</span>
7 0
3 years ago
Read 2 more answers
What 3 types of metals have magnetic properties
satela [25.4K]
Ferromagnetic, paramagnetic, and diamagnetic
6 0
3 years ago
Read 2 more answers
Other questions:
  • What can you do to mitigate these risks?
    12·1 answer
  • Answers assuming the bag does not break, what will be its volume at the top of a mountain where the pressure is 453 mmhg and the
    15·1 answer
  • body is suspended from the ceiling with two wires that make an angle of 40° with the ceiling. The weight of the body is 150N. Wh
    8·1 answer
  • how do you find the uncertainty of a single measurement? For example, I am trying to find the uncertainty of 26 grams. ​
    7·1 answer
  • Two charges are located in the x–y plane. If q1 = -2.90 nC and is located at x = 0.00 m, y = 0.840 m and the second charge has m
    9·1 answer
  • A flat disk of radius 0.50 m is oriented so that the plane of the disk makes an angle of 30 degrees with a uniform electric fiel
    5·1 answer
  • How do greenhouse gasses and fossil fuse have an impact on the earth?
    5·1 answer
  • the specific heat of gold is 0.031 calories degrees Celsius and the specific heat of silver is 0.057 calories degrees Celsius so
    12·1 answer
  • Net force and acceleration
    11·1 answer
  • A juggler throws two balls to the same height so that one is at the halfway point going up when the other is at the halfway poin
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!