According to the question, the determined melting point of the compound is 112.5-113.0oC. When the solidified compound was retried, the melting point was found to be 133.6-154.5oC. This greater range higher than 112°C is caused by reusing samples leads to errors.
A pure sample is known by its sharp melting point. A pure sample does not melt over a large range. We can see this in the predetermined melting points of the pure sample(112.5-113.0oC).
However, reusing a sample introduces errors because the pure sample may become contaminated leading to a larger and higher range of melting point (133.6-154.5oC) which is far above 112°C.
Learn more: brainly.com/question/5325004
Answer:
False
Explanation:
Wild animals are found in an ecosystem and they are considered to be a natural resource and a biotic factor in the environment. They are living things so they are a natural resource.
<span>1. Tap water has a small concentration of H+ & OH- ions as well as water molecules, hence there would be permanent dipole-permanent dipole (p.d.-p.d.) forces of attraction between the water molecules (aka H-bonds) as well as ionic bonds between the H+ & OH- ions.
2. Distilled water does not have H+ & OH- ions, hence only H-bonds exist between the water molecules.
3. There are covalent bonds between the individual sugar molecules.
4. There are ionic bonds between the Na+ & Cl- ions in NaCl.
5. There are p.d.-p.d. forces of attraction between the Na+ ions and the O2- partial ions of the water molecules as well as between the Cl- ions and the H+ partial ions of the water molecules. There are also H-bonds between the individual water molecules and ionic bonds between the Na+ & Cl- ions (although these are in much lower abundance than in unsolvated solid NaCl).
6. There are i.d.-i.d. as well as p.d.-p.d. forces of attraction between the sugar molecules and the water molecules. There are also H-bonds between the individual water molecules and covalent bonds within the sugar molecules.</span>
maybe 1+8 (4+548) 4/6 4+4
Answer: Primary consumers make up the second trophic level. They are also called herbivores. They eat primary producers—plants or algae—and nothing else. For example, a grasshopper living in the Everglades is a primary consumer