Energy were released from the walnut, q = 1,673.6 J
<h3>Equation :</h3>
To find the energy using formula,
q = mcΔt
where,
q is charge
m is mass
c is specific heat of water
Δt is change in temperature
So, given
t₁ = 50°C
t₂ = 60°C
m = 40g
c = 4.184 J/g
Now putting the values known,
We get,
q = mc(t₂ - t₁)
q = 40g x 4.184 J/g x (60 - 50)
q = 167.36 J x 10
q = 1,673.6 J
<h3>What is heat energy?</h3>
Heat is the thermal energy that is transferred when two systems with different surface temperatures come into contact. Heat is denoted by the letters q or Q and is measured in Joules.
To know more about specific heat :
brainly.com/question/11297584
#SPJ9
<span>Calculate the mass of 1 L of solution. Mass of solution=1000mL soln ×1.19 g soln1mL soln =1190 g soln (3 significant figures + 1 guard digit)Calculate the mass of HCl . Mass of HCl=1190g soln ×37.7g HCl100g soln =448.6 g HCl.Calculate the moles of HCl . ...Calculate the molarity of the HCl.</span>
Answer:
0.3 mole
Explanation:
number of moles grams
one 14+(4×1)+14+(3×16)
1 80
? 24
Therefore, 24×1÷80 = 0.3 moles of ammonium nitrate
Answer:
A. When temperature increases, the number and energy of collisions between particles increases, which increases the rate of the reaction.
Explanation:
The reaction rate measures the speed with which a reaction proceeds. Based on the collision theory of reaction rates, the rate of a given reaction depends on the number of collisions per time and how successful or effective the collisions are.
Reaction rate in view of the collision theory is very related to concentration and temperature. Both properties are directly proportional to the rate of a reaction.
As temperature increase, the rate of the reaction increases due to the number of effective collisions and the energy of between colliding particles.
106.4 is going to be your answer