1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mixas84 [53]
3 years ago
7

What is the approximate wavelength of a light whose second-order dark band forms a diffraction angle of 15.0° when it passes thr

ough a diffraction grating that has 250.0 lines per mm? 26 nm 32 nm 414 nm 518 nm
Physics
2 answers:
anzhelika [568]3 years ago
7 0
414nm just took the test
devlian [24]3 years ago
4 0
414 is the right answer. I just took the test and got an 100%
You might be interested in
A 100-W lightbulb is placed in a cylinder equipped with a moveable piston. The lightbulb is turned on for 0.010 hour, and the as
Taya2010 [7]

Answer:

w =  - 508.53 joules

q = - 3091.47 joules

Explanation:

Let us convert the time in hours into seconds

0.010* 3600\\= 36

Change in internal energy

\delta E = p * \delta t

where E is the internal energy in Joules

p is the power in watts

and t is the time in seconds

\delta E = - 100 * 36\\

\delta E = - 3600 Joules

Amount of work done by the system

w = - P * \delta V

where P is the pressure and V is the volume

Substituting the given values in above equation, we get -

w = - 1 * ( 5.92 -0.90)\\

w = -5.02 liter-atmospheres

Work done in Joules

- 5.02 * 101.3\\= 508.53Joules

q = \delta E - w\\

Substituting the given values we get -

q = - 3600 - (-508.53)\\q = - 3091.47

Thus

w =  - 508.53 joules

q = - 3091.47 joules

7 0
3 years ago
A helium nucleus (charge = 2e, mass = 6.63 10-27 kg) traveling at 6.20 105 m/s enters an electric field, traveling from point ci
MA_775_DIABLO [31]

Answer:

v_B=3.78\times 10^5\ m/s

Explanation:

It is given that,

Charge on helium nucleus is 2e and its mass is 6.63\times 10^{-27}\ kg

Speed of nucleus at A is v_A=6.2\times 10^5\ m/s

Potential at point A, V_A=1.5\times 10^3\ V

Potential at point B, V_B=4\times 10^3\ V

We need to find the speed at point B on the circle. It is based on the concept of conservation of energy such that :

increase in kinetic energy = increase in potential×charge

\dfrac{1}{2}m(v_A^2-v_B^2)=(V_B-V_A)q\\\\\dfrac{1}{2}m(v_A^2-v_B^2)={(4\times 10^3-1.5\times 10^3)}\times 2\times 1.6\times 10^{-19}=8\times 10^{-16}\\\\v_A^2-v_B^2=\dfrac{2\times 8\times 10^{-16}}{6.63\times 10^{-27}}\\\\v_A^2-v_B^2=2.41\times 10^{11}\\\\v_B^2=(6.2\times 10^5)^2-2.41\times 10^{11}\\\\v_B=3.78\times 10^5\ m/s

So, the speed at point B is 3.78\times 10^5\ m/s.

7 0
3 years ago
A van is traveling with an initial velocity of 12 m/s. The driver takes a time of 45 seconds to speed up to a velocity of 20 m/s
Rufina [12.5K]
  • Initial velocity=u=12m/s
  • Final velocity=v=20m/s
  • Time=t=45s

\\ \rm\hookrightarrow Acceleration=\dfrac{v-u}{t}

\\ \rm\hookrightarrow Acceleration=\dfrac{20-12}{45}

\\ \rm\hookrightarrow Acceleration=\dfrac{8}{45}

\\ \rm\hookrightarrow Acceleration=0.1m/s^2

Now

  • Distance=s

\\ \rm\hookrightarrow v^2-u^2=2as

\\ \rm\hookrightarrow (20)^2-12^2=2(0.1)s

\\ \rm\hookrightarrow 400-144=0.2s

\\ \rm\hookrightarrow 256=0.2s

\\ \rm\hookrightarrow s=\dfrac{256}{0.2}

\\ \rm\hookrightarrow s=1280m

4 0
3 years ago
A mass on a horizontal surface is connected to the spring and pulled to the right along the surface stretching the spring by 25
solniwko [45]

Answer:

320 N/m

Explanation:

From Hooke's law, we deduce that

F=kx where F is applied force, k is spring constant and x is extension or compression of spring

Making k the subject of formula then

k=\frac {F}{x}

Conversion

1m equals to 100cm

Xm equals 25 cm

25/100=0.25 m

Substituting 80 N for F and 0.25m for x then

k=\frac {80}{0.25}=320N/m

Therefore, the spring constant is equal to 320 N/m

3 0
4 years ago
After a great many contacts with the charged ball, how is the charge on the rod arranged (when the charged ball is far away)?
faust18 [17]

Answer: Option (b) is the correct answer.

Explanation:

Since, there is a negative charge present on the ball and a positive charge present on the rod. So, when the negatively charged metal ball will come in contact with the rod then positive charges from rod get conducted towards the metal ball.

Hence, the rod gets neutralized. But towards the metal ball there is a continuous supply of negative charges. Therefore, after the neutralization of positive charge from the rod there will be flow of negative charges from the metal ball towards the rod.

Thus, we can conclude that negative charge spread evenly on both ends.

8 0
3 years ago
Other questions:
  • 2)
    10·1 answer
  • The main light gathering device of a refractor telescope is
    8·1 answer
  • A fixed end rectangular cantilever beam is subjected to 40 kg load at its end. The beam is 80 mm high, 20 mm wide and 0.5 m long
    11·1 answer
  • 5. The starter phase of a fitness program is important because it A. gives a person the opportunity to discover the exercises th
    7·1 answer
  • Two point charges are separated by 6 cm. The attractive force between them is 20 N. Find the force between them when they are se
    5·1 answer
  • Facts about Tsunami?
    9·1 answer
  • Convert 15 centimeters to inches.
    5·1 answer
  • How do you make a iPad I can text and stuff and don't understand how
    5·2 answers
  • What is kinetic and potential energy?
    7·2 answers
  • A stone of mass 6kg is released from a height of 30m, calculate the velocity before the impact (take gravity=10m/s)
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!