The field is
<em><u>E</u></em> = 1 / (4 pi ε₀) Q / <em><u>R</u></em>² directed radially outward from
the center of the shell.
R is the radius of the spherical shell.
Notice that the field is exactly the same as the field due to a point-charge
with magnitude 'Q' that's located at the center of the sphere.
Answer:
a) 
b) 
Explanation:
Given:
- speed of rocket initially,

- top speed of rocket after acceleration,

- time taken to get to the top speed,

- final speed of the rocket,

- time taken to get to the final speed after reaching the top speed,

Now the acceleration:



Now as a fraction of gravity:


Now, the deceleration:


Now as a fraction of gravity:


Answer:
a) P = 149140[w]; b) 1491400[J]; c) v = 63.06[m/s]
Explanation:
As the solution to the problem indicates, we must convert the power unit from horsepower to kilowatts.
P = 200 [hp]
![200[hp] * 745.7 [\frac{watt}{1 hp}]\\149140[watt]](https://tex.z-dn.net/?f=200%5Bhp%5D%20%2A%20745.7%20%5B%5Cfrac%7Bwatt%7D%7B1%20hp%7D%5D%5C%5C149140%5Bwatt%5D)
Now the power definition is known as the amount of work done in a given time
P = w / t
where:
w = work [J]
t = time [s]
We have the time, and the power therefore we can calculate the work done.
w = P * t
w = 149140 * 10 = 1491400 [J]
And finally, we can calculate the velocity using, the expression for kinetic energy
The key to solving this problem is to recognize that work equals kinetic energy
![v=\sqrt{\frac{w}{0.5*m}} \\v=\sqrt{\frac{1491400}{0.5*750}} \\v=63.06[m/s]](https://tex.z-dn.net/?f=v%3D%5Csqrt%7B%5Cfrac%7Bw%7D%7B0.5%2Am%7D%7D%20%20%5C%5Cv%3D%5Csqrt%7B%5Cfrac%7B1491400%7D%7B0.5%2A750%7D%7D%20%20%5C%5Cv%3D63.06%5Bm%2Fs%5D)
A boiling pot of water (the water travels in a current throughout the pot), a hot air balloon (hot air rises, making the balloon rise) , and cup of a steaming, hot liquid (hot air rises, creating steam) are all situations where convection occurs.
Read more on Brainly.com -
brainly.com/question/1581851#readmore