<u>In modern physics</u>, as it was called "Stefan-Boltzmann law", the total energy radiated per unit surface area of a black body is directly proportional to the fourth power of the black body's temperature T
as:

where: P is the power (total energy radiated per second per square meter) and T is the temperature of a black body.
then we can make a ratio between the state of before quadruple (with subscript 1) and after (with subscript 2) as:

As

Then

then

- The factor will the total energy radiated per second per square meter increase = 256
Answer:
The work done on the box is 100 Nm
The power is 20 Nm/s
Explanation:
There is a force 25 newtons moves a box a distance of 4 meters in
5 seconds
The work done on the box is the product of the force and the distance
that the box moves ⇒ <em>work = force × distance</em>
The force = 25 newtons
the distance = 4 meters
Work = 25 × 4 = 100 NM
<em>The work done on the box is 100 Nm</em>
<em></em>
The force moves the box 4 meters in 5 seconds
The power is the rate of work
<em>The power = work ÷ time</em>
The work = 100 Nm
The time = 5 seconds
The power = 100 ÷ 5 = 20 Nm/s
<em>The power is 20 Nm/s</em>
Answer:
Part A the answer is the dielectric constant.
Part B Mica- mylar- paper- quartz
Explanation:
The capacity of a capacitor is given by
C = ε ε₀ A / d
Where the dielectric constant (ε) is the value of the material between the plates of the capacitor, we see that as if value increases the capacity also increases.
Another magnitude that we must take into account that the maximum working voltage, the greater the safer is the capacitor
the flexibility of the material must also be taken into account
Part A the answer is the dielectric constant.
Pate B order the materials from best to worst
Mica. The best ever
Mylar Flexible
Paper Low capacity, low working voltage, flexible
Quartz high dielectric, but brittle
Answer:
what did u say and what language are you speaking in