Explanation:
(a) The net force in the y direction is the sum of the individual forces. Taking up to be +y:
∑F = Lift − Weight
∑F = 100,000 N − 75,000 N
∑F = 25,000 N
(b) Since the net force is not 0, the forces are unbalanced.
(c) Since the lift is greater than the weight, the plane will rise.
(d) The net force in the x direction is the sum of the individual forces. Taking forward to be +x:
∑F = Thrust − Drag
∑F = 200,000 N − 23,000 N
∑F = 177,000 N
(e) Since the net force is not 0, the forces are unbalanced.
(f) Since the thrust is greater than the drag, the plane will accelerate.
To solve this problem we will apply the concepts related to the conservation of momentum. Momentum can be defined as the product between mass and velocity. We will depart to facilitate the understanding of the demonstration, considering the initial and final momentum separately, but for conservation, they will be later matched. Thus we will obtain the value of the mass. Our values will be defined as




Initial momentum will be


After collision

Final momentum


From conservation of momentum

Replacing,





Answer: Vector quantity is a measurement that has both magnitude and direction.
Explanation:
Vector quantity is a measurement that has both magnitude and direction. Examples are force, acceleration, displacement and velocity.
Answer: First option
Explanation: The higher the frequency, the higher the energy.
λν=c where λ is the wavelength, ν is the frequency and c is the speed of light. So when wavelength decreases, v increases and so does energy.
An AM radio wave has a very long wavelength. It therefore has a very low frequency and low energy.
A light wave has a very short wavelength. It therefore has a high frequency and high energy.
Answer:
A. the total net force is 14
B. the total net force is 15
Explanation: