Yes they do if that was your question
A chemical formula shows the kinds and numbers of <u>atoms</u> in the smallest representative unit of a substance.
<u>Explanation:</u>
In chemistry, a formula unit is the empirical formula of "ionic or covalent network solid compound" that is used as an independent entity for "stoichiometric calculations". This formula is a representation of a molecule that uses chemical symbols.
The unit is the lowest whole number ratio of ions represented in an ionic compound. It gives the numbers of atoms representing the "smallest representative" unit of a substance. The number of atoms also tells us about the chemical and physical properties of the compound formed.
Answer:
Option B will require a shorter wave length of light.
Explanation:
The bonding between Ozone (O3) and Oxygen (O2) can be used to explain why the breaking of oxygen into Oxygen radicals will require a shorter wave length.
- The bond between Oxygen (O2) is a double bond while Ozone (O3) has an intermediate bond between a double bond and a single bond.
- The bond order of Oxygen (O2) is equals 2 while that of Ozone (O3) is 1.5. Since the bond order of oxygen is higher, it will require more energy to break the bond compared to breaking the Ozone (O3) bond.
- Recall that Energy is inversely proportional to wave length.
- So it will require a shorter wave length to break the Oxygen (O2) into its radicals.
Answer:
(1) addition of HBr to 2-methyl-2-pentene
Explanation:
In this case, we will have the formation of a <u>carbocation</u> for each molecule. For molecule 1 we will have a <u>tertiary carbocation</u> and for molecule 2 we will have a <u>secondary carbocation</u>.
Therefore the <u>most stable carbocation</u> is the one produced by the 2-methyl-2-pentene. So, this molecule would react faster than 4-methyl-1-pentene. (See figure)