Answer:
15912 × 10∧-19 KJ
Explanation:
Given data;
frequency of photon = 2.4 × 10^18 1/s.
Planck's constant = 6.63 × 10∧-34 j.s
Energy = ?
Formula:
E = h × ν
E = 6.63 × 10∧-34 j.s × 2.4 × 10^18 1/s
E= 15.912 × 10∧-16 j
now we will convert the joule into kilo joule,
E = 15.912 × 10∧-16 j /1000 = 15.912 × 10∧-19 KJ
<span>The part of making a solution that always releases energy is the overall change in forming the solution. The answer is letter D. Although letters A, B and C can be viable answers but, it is not always the case. There are some substances that when you mix or separate them requires more energy or less energy. An example would be w</span>hen the formation (or enthalpy of formation) of carbon
dioxide is negative, it means that it releases heat to the surroundings. When
it releases heat to the surroundings, the reaction is exothermic. Another example is when you mix baking soda and muriatic acid, the resulting mixture is colder. When it is cold, it means that the reaction is endothermic. So the best answer is letter D.
Answer:
V = 65.81 L
Explanation:
En este caso, debemos usar la expresión para los gases ideales, la cual es la siguiente:
PV = nRT (1)
Donde:
P: Presion (atm)
V: Volumen (L)
n: moles
R: constante de gases (0.082 L atm / mol K)
T: Temperatura (K)
De ahí, despejando el volumen tenemos:
V = nRT / P (2)
Sin embargo como estamos hablando de condiciones normales de temperatura y presión, significa que estamos trabajando a 0° C (o 273 K) y 1 atm de presión. Lo que debemos hacer primero, es calcular los moles que hay en 50 g de amoníaco, usando su masa molar de 17 g/mol:
n = 50 / 17 = 2.94 moles
Con estos moles, reemplazamos en la expresión (2) y calculamos el volumen:
V = 2.94 * 0.082 * 273 / 1
<h2>
V = 65.81 L</h2>
It doesn't?
Heat transfers from hot objects to cold objects and for ice to melt it has to increase the temperature.