At the lowest point on the Ferris wheel, there are two forces acting on the child: their weight of 430 N, and an upward centripetal/normal force with magnitude n; then the net force on the child is
∑ F = ma
n - 430 N = (430 N)/g • a
where m is the child's mass and a is their centripetal acceleration. The child has a linear speed of 3.5 m/s at any point along the path of the wheel whose radius is 17 m, so the centripetal acceleration is
a = (3.5 m/s)² / (17 m) ≈ 0.72 m/s²
and so
n = 430 N + (430 N)/g (0.72 m/s²) ≈ 460 N
ANSWER

EXPLANATION
Parameters given:
Mass of the student, M = 70 kg
Mass of the textbook, m = 1 kg
Distance, r = 1 m
To find the gravitational force acting between the student and the textbook, apply the formula for gravitational force:

where G = gravitational constant
Therefore, the gravitational force acting between the student and the textbook is:

That is the answer.
Answer:
C) True. S increases with time, v₁ = gt and v₂ = g (t-t₀) we see that for the same t v₁> v₂
Explanation:
You have several statements and we must select which ones are correct. The best way to do this is to raise the problem.
Let's use the vertical launch equation. The positive sign because they indicate that the felt downward is taken as an opponent.
Stone 1
y₁ = v₀₁ t + ½ g t²
y₁ = 0 + ½ g t²
Rock2
It comes out a little later, let's say a second later, we can use the same stopwatch
t ’= (t-t₀)
y₂ = v₀₂ t ’+ ½ g t’²
y₂ = 0 + ½ g (t-t₀)²
y₂ = + ½ g (t-t₀)²
Let's calculate the distance between the two rocks, it should be clear that this equation is valid only for t> = to
S = y₁ -y₂
S = ½ g t²– ½ g (t-t₀)²
S = ½ g [t² - (t²- 2 t to + to²)]
S = ½ g (2 t t₀ - t₀²)
S = ½ g t₀ (2 t -t₀)
This is the separation of the two bodies as time passes, the amount outside the Parentheses is constant.
For t <to. The rock y has not left and the distance increases
For t> = to. the ratio (2t/to-1)> 1 therefore the distance increases as time
passes
Now we can analyze the different statements
A) false. The difference in height increases over time
B) False S increases
C) Certain s increases with time, v₁ = gt and V₂ = g (t-t₀) we see that for the same t v₁> v₂