By definition, one mole (one gram molecular weight) of any substance, contains Avogadro’s number of particles; atoms if you are discussing an element, or molecules if a compound. Avogadro’s number has been determined by several methods, all of the accepted values lie within a range of +-1% about the value of 6.022045 x 10^23/gm. That is a large number, in this case approximately; 602,204,500,000,000,000,000,000 molecules of glucose.
From the web :v
<u>Answer:</u> The concentration of the solution is 0.25 M
<u>Explanation:</u>
Let the volume of solution of 2.5 M NaCl be 10 mL
We are given:
Dilution ratio = 1 : 10
So, the solution prepared will have a volume of = 
To calculate the molarity of the diluted solution, we use the equation:
where,
are the molarity and volume of the concentrated NaCl solution
are the molarity and volume of diluted NaCl solution
We are given:
Putting values in above equation, we get:

Hence, the concentration of the solution is 0.25 M
The definition of heat transfer through convection involves the movement of a fluid that causes heat to move away from a hear source. That being said, convection can take place in a lake, air inside, and air outside since both liquids and gasses are considered to be fluids.
I hope this helps.
Let me know if anything is unclear.
From the stoichiometry of the combustion reaction, we can see that 7.4 L of oxygen is consumed.
<h3>What is combustion?</h3>
Combustion is a reaction in which a substance is burnt in oxygen. The equation of the reaction is; C4H10O(l) + 6O2 (g) → 4CO2 (g) + 5H2O(l)
We can obtain the number of moles of CO2 from;
PV = nRT
n = 1.02 atm * 7.15 L/0.082 atm LK-1mol-1 * (125 + 273) K
n = 7.29 /32.6
n = 0.22 moles
If 6 moles of oxygen produces 4 moles of CO2
x moles of oxygen produces 0.22 moles of CO2
x = 0.33 moles
1 mole of oxygen occupies 22.4 L
0.33 moles of oxygen occupies 0.33 moles * 22.4 L/ 1 mole
= 7.4 L of oxygen
Learn more about stoichiometry: brainly.com/question/13110055
#SPJ1