Answer:
Explanation:
The equation is given as:
CH3CHOHC2H4CHO + CH3OH --> CYCLIC ACETAL + H2O
This above equation is carried out in the presence of a strong acid. There are five mechanisms employed and they are:
Step 1:
Initial formation of the hemiacetal which takes several steps
Step 2:
Addition of a proton. The hemicetal is protonated on the hydroxyl group (-OH group)
Step 3:
As seen a bond is broken to give the H2O molecule and a resonance stabilized cation.
The carbonyl group on the cation is enriched with the oxygen-18 got from the H2O molecule as seen in the mechanism.
Step 4:
An attraction occurs between electrophile and nucleophile i.e the stabilised cation and the lone paids of the methanol.
Step 5:
Finally, a proton (+) is removed from the molecule by a lone pair of electron on the methanol.
Attached are the Steps 1 - 5 mechanism below
Answer:
6.12 L
Explanation:
Given that,
Initial volume, V₁ = 5 L
Initial temperature, T₁ = 7.0°C = 343 K
Final temperature, T₂ = 147°C = 420 K
We need to find its new volume. The relation between volume and temperature is given by :

So, the new volume is 6.12 L.
Answer:
Two moles of HC2H3O2 react with one mole of Ca(OH)2 to produce one mole of calcium acetate and two moles of water.
Explanation:
HC2H3O2 is Acetic acid that can also be represented as (CH3COOH).
when Ca(OH)2 reacts with Acetic acid the product formed will be Calcium acetate and water
Chemically the reaction can be represented as
2CH
3
COOH + Ca(OH)
2 → Ca(CH
3
COO)
2 + 2H
2
O
Two moles of CH3COOH react with one mole of Ca(OH)2 to produce one mole of Ca(CH3COO)2 and two moles of H2O.
Answer:
V HCNsln = 0.9176 L
Explanation:
V HCNsln = ?
∴ m HCN = 31 g
∴ <em>C</em> HCNsln = 1.25 mol/L
∴ molar mass HCN = 27.0253 g/mol
⇒ V HCNsln = (31 g)*(mol/27.0253 g)*(L/1.25 mol) = 0.9176 Lsln