The concept used here is the Le Chatelier's principle. When a disturbance is introduced to the system, it favors the direction of reaction that minimizes the disturbance to regain equilibrium.
In endothermic reactions, the forward reaction is favored when the temperature is low. Otherwise, the reverse reaction is favored. When you add the amounts of substances on the reactant side, more products would formed favoring the forward reaction. If you increase concentration on the product side, you form more reactants so it would favor the reverse reaction. Lastly, since 10 moles of gases are needed in the reactant side, it would be favored during high pressure reaction.
Answer:
\large \boxed{\textbf{609 kJ}}
Explanation:
The formula for the heat absorbed is
q = mCΔT
Data:
m = 2.07 kg
T₁ = 23 °C
T₂ = 191 °C
C = 1.75 J·°C⁻¹g⁻¹
Calculations:
1. Convert kilograms to grams
2.07 kg = 2070 g
2. Calculate ΔT
ΔT = T₂ - T₁ = 191 - 23 = 168 °C
3. Calculate q

Answer:
4) transferred from the valence shell of one atom to the valence shell of another atom
Explanation:
Electrons are located outside of the nucleus which contains the protons and the neutrons.
For bonds to form, valence electrons located in the outermost shell electrons are involved. These are the valence electrons. These outer shell electrons can be shared or transferred between two combining atoms to form stable atoms.
In ionic bonds, the electrons are transferred from one specie to another. The atom that loses the electrons becomes positively charged and the receiving atom becomes negatively charged. This is the crux of ionic bonds.
Answer: Decreasing the temperature inside the container will decrease the pressure of a gas inside a closed cubical container.
Explanation:
According to Gay-Lussac's Law : 'The pressure of the gas increases with increase in temperature of the gas when volume of the gas is kept constant'.

At constant volume, pressure of the gas will decrease on decreasing the temperature or vice versa.
Decreasing the temperature inside the container will decrease the pressure of a gas inside a closed cubical container.
**Visible confusion** no problem