Answer:
<em>At equilibrium, the rate of the forward, and the reverse reactions are equal.</em>
Explanation:
In an equilibrium chemical reaction, the rate of forward reaction, is equal to the rate of reverse reaction. Note that the reactions does not cease at equilibrium, but rather, the reactants are converted to product, at the same rate at which the product is also being converted into the reactants in the reaction. When chemical equilibrium is reached, a careful calculation of the value of equilibrium constant is approximately equal to 1.
NB: If the value of equilibrium constant is far far greater than 1, then the reaction will favors more of the forward reaction, and if far far less than 1, the reaction will favor more of the reverse reaction.
I think you just do 11.29 multiplied by 186 since to find density you divide mass by volume. So 186 divided by x is 11.29. So in conclusion the volume would be 2,099.94mL
Answer:
False
Explanation:
Molecules are not more sizable atoms than the average atom. Molecules are compunds of two different symbolic elements, when you combine then you get a molecule. The answer to your question is false because if they were larger molecules, they would be in object around us but molecules are not in all objects around us.
I believe a solution of Sn(NO3)2 can not be stored in an aluminium container because Aluminium is higher in the reactivity series compared to Tin (Sn). Therefore, Aluminium is more reactive than Tin and hence aluminium will displace Tin from its salt forming Aluminium nitrate and Tin metal. Thus storing Tin nitrate in an aluminium container will cause the "eating away' of the container.
Max Planck concluded that energy is not continuous and is carried in discontinuous units which he named quanta.