1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
White raven [17]
3 years ago
7

Derive the following conversion factors: (a) Convert a pressure of 1 psi to kPa (b) Convert a vol ume of 1 liter to gallons (c)

Convert a viscosity of 1 lbf .s/ft^2 to N s/m^2
Engineering
1 answer:
kirill [66]3 years ago
4 0

Answer:

a)6.8 KPa

b)0.264 gallon

c)47.84 Pa.s

Explanation:

We know that

1 lbf=  4.48 N

1 ft =0.30 m

a)

Given that

P= 1 psi

psi is called pound force per square inch.

We know that 1 psi = 6.8 KPa.

b)

Given that

Volume = 1 liter

We know that 1000 liter = 1 cubic meter.

1 liter =0.264 gallon.

c)

1\ \frac{lb.s}{ft^2}=47.84\ \frac{Pa.s}{ft^2}

You might be interested in
The electric motor exerts a torque of 800 N·m on the steel shaft ABCD when it is rotating at a constant speed. Design specificat
kodGreya [7K]

Answer:

d= 4.079m ≈ 4.1m

Explanation:

calculate the shaft diameter from the torque,    \frac{τ}{r} = \frac{T}{J} = \frac{C . ∅}{l}

Where, τ = Torsional stress induced at the outer surface of the shaft (Maximum Shear stress).

r = Radius of the shaft.

T = Twisting Moment or Torque.

J = Polar moment of inertia.

C = Modulus of rigidity for the shaft material.

l = Length of the shaft.

θ = Angle of twist in radians on a length.  

Maximum Torque, ζ= τ ×  \frac{ π}{16} × d³

τ= 60 MPa

ζ= 800 N·m

800 = 60 ×  \frac{ π}{16} × d³

800= 11.78 ×  d³

d³= 800 ÷ 11.78

d³= 67.9

d= \sqrt[3]{} 67.9

d= 4.079m ≈ 4.1m

3 0
3 years ago
Read 2 more answers
Who can use NIST resources?
sukhopar [10]

Answer:

Federal agencies

Explanation:

NIST (National Institute of Standards and Technology) also called between 1901 and 1988 National Bureau of Standards (NBS), it is an agency of the Technology Administration of the United States Department of Commerce. The mission of this institute is to promote innovation and industrial competition in the United States through advances in metrology, standards and technology in ways that improve economic stability and quality of life.

As part of this mission, NIST scientists and engineers continually refine the science of measurement (metrology) by creating precise engineering and manufacturing required for most current technological advances. They are also directly involved in the development and testing of standards made by the private sector and government agencies. The NIST was originally called the National Bureau of Standards (NBS), a name it had from 1901 to 1988. The progress and technological innovation of the United States depends on the abilities of the NIST, especially if we talk about four areas: biotechnology , nanotechnology, information technologies and advanced manufacturing.

7 0
3 years ago
An automotive fuel has a molar composition of 85% ethanol (C2H5OH) and 15% octane (C8H18). For complete combustion in air, deter
slava [35]

Answer:

a) 1

b) 1813.96 MJ/kmol

c) 32.43 MJ/kg ,  1980.39 MJ/Kmol

Explanation:

molar mass of  ethanol (C2H5OH) = 46 g/mol

molar mass of   octane (C8H18) = 114 g/mol

therefore the moles of ethanol and octane

ethanol =  0.85 / 46

octane = 0.15 / 114

a) determine the molar air-fuel ratio and air-fuel ratio by mass

attached below

mass of air / mass of fuel = 12.17 / 1 = 12.17

b ) Determine the lower heating value

LHV  of  ( C2H5OH) = 26.8 * 46 = 1232.8 MJ/kmol

LHV  of (C8H18). = 44.8 mj/kg * 114 kg/kmol = 5107.2 MJ/Kmol

LHV ( MJ/kmol)  for fuel mixture = 0.85 * 1232.8 + 0.15 * 5107.2 = 1813.96 MJ/kmol

c) Determine higher heating value  ( HHV )

HHV of (C2H5OH) = 29.7 * 46 = 1366.2 MJ/kmol

HHV of C8H18 = 47.9 MJ/kg * 114 = 5460.6 MJ/kmol

HHV  in MJ/kg  = 0.85 * 29.7 + 0.15 * 47.9  = 32.43 MJ/kg

HHV in  MJ /kmol  =  0.85 * 1366.2 + 0.15 * 5460.8 = 1980.39 MJ/Kmol

4 0
3 years ago
Water is pumped steadily through a 0.10-m diameter pipe from one closed pressurized tank to another tank. The pump adds 4.0 kW o
jekas [21]

Complete Question

Complete Question is attached below.

Answer:

V'=5m/s

Explanation:

From the question we are told that:

Diameter d=0.10m

Power P=4.0kW

Head loss \mu=10m

 \frac{P_1}{\rho g}+\frac{V_1^2}{2g}+Z_1+H_m=\frac{P_2}{\rho g}+\frac{V_2^2}{2g}+Z_2+\mu

 \frac{300*10^3}{\rho g}+35+Hm=\frac{500*10^3}{\rho g}+15+10

 H_m=(\frac{200*10^3}{1000*9.8}-10)

 H_m=10.39m

Generally the equation for Power is mathematically given by

 P=\rho gQH_m

Therefore

 Q=\frac{P}{\rho g H_m}

 Q=\frac{4*10^4}{1000*9.81*10.9}

 Q=0.03935m^3/sec

Since

 Q=AV'

Where

 A=\pi r^2\\A=3.142 (0.05)^2

 A=7.85*10^{-3}

Therefore

 V'=\frac{0.03935m^3/sec}{7.85*10^{-3}}

 V'=5m/s

5 0
3 years ago
HELP HELP HELP
Fantom [35]

Summary

Students learn about the variety of materials used by engineers in the design and construction of modern bridges. They also find out about the material properties important to bridge construction and consider the advantages and disadvantages of steel and concrete as common bridge-building materials to handle compressive and tensile forces.

This engineering curriculum aligns to Next Generation Science Standards (NGSS).

Engineering Connection

When designing structures such as bridges, engineers carefully choose the materials by anticipating the forces the materials (the structural components) are expected to experience during their lifetimes. Usually, ductile materials such as steel, aluminum and other metals are used for components that experience tensile loads. Brittle materials such as concrete, ceramics and glass are used for components that experience compressive loads.

Learning Objectives

After this lesson, students should be able to:

List several common materials used the design and construction of structures.

Describe several factors that engineers consider when selecting materials for the design of a bridge.

Explain the advantages and disadvantages of common materials used in engineering structures (steel and concrete).

Educational Standards

NGSS: Next Generation Science Standards - Science

Common Core State Standards - Math

International Technology and Engineering Educators Association - Technology

State Standards

Suggest an alignment not listed above

Subscribe

Get the inside scoop on all things TeachEngineering such as new site features, curriculum updates, video releases, and more by signing up for our newsletter!

PS: We do not share personal information or emails with anyone.

Email Address

First name (optional)

Last Name (optional)

Subscribe to TE Newsletter

Worksheets and Attachments

Strength of Materials Worksheet (doc)

Strength of Materials Worksheet (pdf)

Strength of Materials Worksheet Answers (doc)

Strength of Materials Worksheet Answers (pdf)

Strength of Materials Math Worksheet (doc)

Strength of Materials Math Worksheet (pdf)

Strength of Materials Math Worksheet Answers (doc)

Strength of Materials Math Worksheet Answers (pdf)

More Curriculum Like This

MIDDLE SCHOOL Activity

Breaking the Mold

Explanation:

pabrainlest Poe ty

8 0
2 years ago
Other questions:
  • for high-volume production runs, machining parts from solid material might not be the best choice of manufacturing operations be
    12·1 answer
  • Model the real world idea of an Address. 123 Main Street Apt #2 Small Town, Iowa 55555 USA Write a class called Address, follow
    11·1 answer
  • What is your employer required to have on fixed ladders that extend more than 24 feet in the workplace?
    15·2 answers
  • All of the following are categories for clutch covers except
    11·1 answer
  • The current through a 10-mH inductor is 10e−t∕2 A. Find the voltage and the power at t = 8 s.
    15·2 answers
  • What are common names assigned to instruction addresses in a PLC program called
    8·1 answer
  • 3.
    7·1 answer
  • For the following circuit diagram, if A=010 , B= 101.
    6·1 answer
  • Raw materials used of silicone rubber
    6·2 answers
  • 3. If nothing can ever be at absolute zero, why does the concept exist?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!