Answer:
The answer is
C. Split phase motor
Explanation:
Clamp meters rely on the principle of magnetic induction to make non contact AC current measurements. Electric current flowing through a wire produces a magnetic field.
Which is similar to basic mode of operation of electric motor and split phase motor is a type of electric motor.
What is a a clamp on meter?
Clamp meters are electrical testers which have wide jaws that are able to clamp around an electrical conductor. Originally designed as a single purpose tool for measuring AC current, clamp meters now include inputs for accepting test leads and other probes that support a wide range of electrical measurements, the jaws of a clamp meter permit work in tight spaces and permits current measurements on live conductors without circuit interruption.
False! Just saying. You could be under the influence, or just have no clue as to what you're doing.
Answer:
The temperature T= 648.07k
Explanation:
T1=input temperature of the first heat engine =1400k
T=output temperature of the first heat engine and input temperature of the second heat engine= unknown
T3=output temperature of the second heat engine=300k
but carnot efficiency of heat engine =
where Th =temperature at which the heat enters the engine
Tl is the temperature of the environment
since both engines have the same thermal capacities <em> </em> therefore
We have now that
multiplying through by T
multiplying through by 300
-
The temperature T= 648.07k
The question is asking whether that statement is true or false. Options are;
A) True
B) False
This is about usage of Swing arm restraints.
<em><u>B) False</u></em>
There are different safety features that people employ when a vehicle is lifted. However, for this question, we will only talk about swing arm restraints.
- Swing arm restraints are lifting restraint devices that are used to prevent a cars arms from shifting or going out of position after that car has been lifted and mounted.
- This swing arm restraint does not prevent a vehicle from falling off a lift as it just helps to ensure that the swing arms that are unloaded basically maintain their position.
Read more at; brainly.com/question/17972874
complete question
A certain amplifier has an open-circuit voltage gain of unity, an input resistance of 1 \mathrm{M} \Omega1MΩ and an output resistance of 100 \Omega100Ω The signal source has an internal voltage of 5 V rms and an internal resistance of 100 \mathrm{k} \Omega.100kΩ. The load resistance is 50 \Omega.50Ω. If the signal source is connected to the amplifier input terminals and the load is connected to the output terminals, find the voltage across the load and the power delivered to the load. Next, consider connecting the load directly across the signal source without the amplifier, and again find the load voltage and power. Compare the results. What do you conclude about the usefulness of a unity-gain amplifier in delivering signal power to a load?
Answer:
3.03 V 0.184 W
2.499 mV 125*10^-9 W
Explanation:
First, apply voltage-divider principle to the input circuit: 1
*5
= 4.545 V
The voltage produced by the voltage-controlled source is:
A_voc*V_i = 4.545 V
We can find voltage across the load, again by using voltage-divider principle:
V_o = A_voc*V_i*(R_o/R_l+R_o)
= 4.545*(100/100+50)
= 3.03 V
Now we can determine delivered power:
P_L = V_o^2/R_L
= 0.184 W
Apply voltage-divider principle to the circuit:
V_o = (R_o/R_o+R_s)*V_s
= 50/50+100*10^3*5
= 2.499 mV
Now we can determine delivered power:
P_l = V_o^2/R_l
= 125*10^-9 W
Delivered power to the load is significantly higher in case when we used amplifier, so a unity gain amplifier can be useful in situation when we want to deliver more power to the load. It is the same case with the voltage, no matter that we used amplifier with voltage open-circuit gain of unity.