When a person is turning onto a two-lane road divided by a broken yellow line, you know immediately that you are on a two-way road.
<h3>What is the road about?</h3>
Note that a Yellow centerlines can be seen in roads and it is one that is often used to separate traffic moving in different directions.
Note also that Broken lines can be crossed to allow slower-moving traffic and as such, When a person is turning onto a two-lane road divided by a broken yellow line, you know immediately that you are on a two-way road.
See full question below
You are turning onto a two-lane road divided by a broken yellow line. You know immediately that:
Answers
You are on a two-way road.
You are on a one-way road.
The road is under repair.
You must stay to the left of the broken yellow lines.
Learn more about two-way road from
brainly.com/question/13123201
#SPJ2
Answer with Explanation:
The modulus of elasticity has an profound effect on the mechanical design of any machine part as explained below:
1) Effect on the stiffness of the member: The ability of any member of a machine to resist any force depends on the stiffness of the member. For a member with large modulus of elasticity the stiffness is more and hence in cases when the member has to resist a direct load the member with more modulus of elasticity resists the force better.
2)Effect on the deflection of the member: The deflection caused by a force in a member is inversely proportional to the modulus of elasticity of the member thus in machine parts in which we need to resist the deflections caused by the load we can use materials with greater modulus of elasticity.
3) Effect to resistance of shear and torque: Modulus of rigidity of a material is found to be larger if the modulus of elasticity of the material is more hence for a material with larger modulus of elasticity the resistance it offer's to shear forces and the torques is more.
While designing a machine element since the above factors are important to consider thus we conclude that modulus of elasticity has a profound impact on machine design.
Answer:
Mechanical Efficiency = 83.51%
Explanation:
Given Data:
Pressure difference = ΔP=1.2 Psi
Flow rate =
Power of Pump = 3 hp
Required:
Mechanical Efficiency
Solution:
We will first bring the change the units of given data into SI units.
Now we will find the change in energy.
Since it is mentioned in the statement that change in elevation (potential energy) and change in velocity (Kinetic Energy) are negligible.
Thus change in energy is
As we know that Mass = Volume x density
substituting the value
Energy = Volume * density x ΔP / density
Change in energy = Volumetric flow x ΔP
Change in energy = 0.226 x 8.274 = 1.869 KW
Now mechanical efficiency = change in energy / work done by shaft
Efficiency = 1.869 / 2.238
Efficiency = 0.8351 = 83.51%