Given that,
Mass of trackler, m₁ = 100 kg
Speed of trackler, u₁ = 2.6 m/s
Mass of halfback, m₂ = 92 kg
Speed of halfback, u₂ = -5 m/s (direction is opposite)
To find,
Mutual speed immediately after the collision.
Solution,
The momentum of the system remains conserved in this case. Let v is the mutual speed after the collision. Using conservation of momentum as :
So, the mutual speed immediately after the collision is 1.04 m/s but in opposite direction.
This is false. Your hypothesis, or prediction, is just that: a prediction. Saying its a failure will result in bias.
Answer:
Addition reactions with benzenes lead to the loss of aromaticity.
Benzene and its derivatives undergo a type of substitution reaction in which a hydrogen atom is replaced by a substituent, but the stable aromatic benzene ring is regenerated at the end of the mechanism.
Benzene and its derivatives tend to undergo electrophilic aromatic substitution reactions.
Explanation:
It has been hypothesized, and some studies have supported the conjecture,
that certain species of insects and birds are able to sense the direction of external
magnetic fields.
I don't think there is any such notion where human beings are concerned.
Answer:
(A). The order of the bright fringe is 6.
(B). The width of the bright fringe is 3.33 μm.
Explanation:
Given that,
Fringe width d = 0.5 mm
Wavelength = 589 nm
Distance of screen and slit D = 1.5 m
Distance of bright fringe y = 1 cm
(A) We need to calculate the order of the bright fringe
Using formula of wavelength
Put the value into the formula
(B). We need to calculate the width of the bright fringe
Using formula of width of fringe
Put the value in to the formula
Hence, (A). The order of the bright fringe is 6.
(B). The width of the bright fringe is 3.33 μm.