Newton's 2nd law of motion:
Force = (mass) x (acceleration)
= (0.314 kg) x (164 m/s²)
= 51.5 newtons
(about 11.6 pounds).
Notice that the ball is only accelerating while it's in contact with the racket. The instant the ball loses contact with the racket, it stops accelerating, and sails off in a straight line at whatever speed it had when it left the strings.
~ I hope this helped, and I would appreciate Brainliest. ♡ ~ ( I request this to all the lengthy answers I give ! )
Answer:
Thomson's atomic model was successful in explaining the overall neutrality of the atom. However, its propositions were not consistent with the results of later experiments. In 1906, J. J. Thomson was awarded the Nobel Prize in physics for his theories and experiments on electricity conduction by gases.
Summary. J.J. Thomson's experiments with cathode ray tubes showed that all atoms contain tiny negatively charged subatomic particles or electrons. Thomson proposed the plum pudding model of the atom, which had negatively-charged electrons embedded within a positively-charged "soup."
A pulley is another sort of basic machine in the lever family. We may have utilized a pulley to lift things, for example, a banner on a flagpole.
<u>Explanation:</u>
The point in a fixed pulley resembles the support of a lever. The remainder of the pulley behaves like the fixed arm of a first-class lever, since it rotates around a point. The distance from the fulcrum is the equivalent on the two sides of a fixed pulley. A fixed pulley has a mechanical advantage of one. Hence, a fixed pulley doesn't increase the force.
It essentially alters the direction of the force. A moveable pulley or a mix of pulleys can deliver a mechanical advantage of more than one. Moveable pulleys are appended to the item being moved. Fixed and moveable pulleys can be consolidated into a solitary unit to create a greater mechanical advantage.
Answer: Pedaling your bike : acceleration :: applying the brakes : inertia.
The reason I think this to be the answer to the analogy is because there is energy and work used in both processes (and the unit focuses on forces); gravity is constant and does not change whether one pedals or applies brakes. And I do not think it's deceleration, as deceleration tends to equate to acceleration within the physics perspective.
Edit: I should also add that since you clarified that your unit is motion and forces, Newtons 1st law is the law of inertia. The way to change an objects motion for it to slow down is by applying an additional force. That resistance the bike experiences to slow is the process of inertia. Inertia happens in order to accelerate an object (either by slowing it down, or speeding it up): i.e., the resistance to change.