Answer:
![\mu _j=\dfrac{1}{C_p}\left [T\left(\frac{\partial v}{\partial T}\right)_p-v\right]dp](https://tex.z-dn.net/?f=%5Cmu%20_j%3D%5Cdfrac%7B1%7D%7BC_p%7D%5Cleft%20%5BT%5Cleft%28%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20T%7D%5Cright%29_p-v%5Cright%5Ddp)
Explanation:
Joule -Thompson effect
Throttling phenomenon is called Joule -Thompson effect.We know that throttling is a process in which pressure energy will convert in to thermal energy.
Generally in throttling exit pressure is low as compare to inlet pressure but exit temperature maybe more or less or maybe remains constant depending upon flow or fluid flow through passes.
Now lets take Steady flow process
Let
Pressure and temperature at inlet and
Pressure and temperature at exit
We know that Joule -Thompson coefficient given as

Now from T-ds equation
dh=Tds=vdp
So
![Tds=C_pdt-\left [T\left(\frac{\partial v}{\partial T}\right)_p\right]dp](https://tex.z-dn.net/?f=Tds%3DC_pdt-%5Cleft%20%5BT%5Cleft%28%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20T%7D%5Cright%29_p%5Cright%5Ddp)
⇒![dh=C_pdt-\left [T\left(\frac{\partial v}{\partial T}\right)_p-v\right]dp](https://tex.z-dn.net/?f=dh%3DC_pdt-%5Cleft%20%5BT%5Cleft%28%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20T%7D%5Cright%29_p-v%5Cright%5Ddp)
So Joule -Thompson coefficient
![\mu _j=\dfrac{1}{C_p}\left [T\left(\frac{\partial v}{\partial T}\right)_p-v\right]dp](https://tex.z-dn.net/?f=%5Cmu%20_j%3D%5Cdfrac%7B1%7D%7BC_p%7D%5Cleft%20%5BT%5Cleft%28%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20T%7D%5Cright%29_p-v%5Cright%5Ddp)
This is Joule -Thompson coefficient for all gas (real or ideal gas)
We know that for Ideal gas Pv=mRT

So by putting the values in
![\mu _j=\dfrac{1}{C_p}\left [T\left(\frac{\partial v}{\partial T}\right)_p-v\right]dp](https://tex.z-dn.net/?f=%5Cmu%20_j%3D%5Cdfrac%7B1%7D%7BC_p%7D%5Cleft%20%5BT%5Cleft%28%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20T%7D%5Cright%29_p-v%5Cright%5Ddp)
For ideal gas.
Explanation:
Below is an attachment containing the solution.
Because plastic and rubber are insulators.
The difference in frequency of the two signals is
.
The given parameters;
- <em>frequency of the 13 C signal = 201.16 MHz</em>
The energy of the 13 C signal located at 20 ppm is calculated as follows;

The energy of the 13 C signal located at 179 ppm is calculated as follows;

The difference in frequency of the two signals is calculated as follows;

Thus, the difference in frequency of the two signals is
.
Learn more here:brainly.com/question/14016376