1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kumpel [21]
3 years ago
5

How coal power plants produce electrical energy to power our homes

Physics
1 answer:
balandron [24]3 years ago
3 0
Coal plants use a boiler to produce steam.
You might be interested in
The atmosphere of Mercury and Mars are very thin. What effect does the thin atmosphere have on the temperature on the surface of
KengaRu [80]

Answer:

Very hot during the day and very cold at night.

Explanation:

Due to the thin atmosphere, they have very hot climate during the day time and very cold climate at night. This happens because they contain very low amounts of greenhouse gases. These gases retain the heat at night. The atmosphere also prevents excessive light and UV rays from entering. The thin  atmosphere leads to many asteroids and comets hitting the surface of the planet. On earth, these asteroids usually, burn up in the mesosphere layer of the atmosphere. These asteroid collisions cause massive fires. This in turn,  causes the temperature to increase during the day. During the night time, massive fires cannot burn due to the low temperature because of the lack of greenhouse gases.

3 0
2 years ago
During a chemical reaction, some substances are completely consumed while others my not be. What is the substance that is comple
LUCKY_DIMON [66]

Answer:

It is Limiting Reactant

Explanation:

5 0
2 years ago
The reaction is at dynamic equilibrium.
DiKsa [7]

Answer:

Nitrogen and hydrogen combine at the same rate that ammonia breaks down.

Explanation:

7 0
2 years ago
You wind a small paper tube uniformly with 153 turns of thin wire to form a solenoid. The tube\'s diameter is 5.11 mm and its le
lina2011 [118]

The concept required to solve this problem is linked to inductance. This can be defined as the product between the permeability in free space by the number of turns squared by the area over the length. Recall that Inductance is defined as the opposition of a conductive element to changes in the current flowing through it. Mathematically it can be described as

L = \frac{\mu N^2 A}{l}

Here,

\mu = Permeability at free space

N = Number of loops

A = Cross-sectional Area

l = Length

Replacing with our values we have,

L = \frac{(4\pi *10^{-7})(153)^2(\pi (\frac{5.11*10^{-3}}{2})^2)}{2.47*10^{-2}}

L = 0.00002442H

L = 24.42\mu H

Therefore the Inductance is 24.42\mu H

3 0
3 years ago
A cannon with a muzzle speed of 1 000 m/s is used to start an avalanche on a mountain slope. The target is 2 000 m from the cann
Nataliya [291]

Answer:

∅ = 89.44°

Explanation:

In situations like this air resistance are usually been neglected thereby making g= 9.81 m/s^{2}

Bring out the given parameters from the question:

Initial Velocity (V_{1}) = 1000 m/s

Target distance (d) = 2000 m

Target height (h) =  800 m

Projection angle ∅ = ?

Horizontal distance = V_{1x}tcos ∅     .......................... Equation 1

where V_{1x} = velocity in the X - direction

           t = Time taken

Vertical Distance = y = V_{1y} t - \frac{1}{2}gt^{2}        ................... Equation 2

Where   V_{1y} = Velocity in the Y- direction

              t  = Time taken

V_{1y} = V_{1}sin∅

Making time (t) subject of the formula in Equation 1

                    t = d/(V_{1x}cos ∅)

                      t = \frac{2000}{1000coso} = \frac{2}{cos0}  =    \frac{d}{cos o}             ...................Equation 3

substituting equation 3 into equation 2

Vertical Distance = d = V_{1y} \frac{d}{cos o} - \frac{1}{2}g\frac{2}{cos0}   ^{2}

                                  Vertical Distance = h = sin∅ \frac{d}{cos o} - \frac{1}{2}g\frac{2}{cos0}   ^{2}

  Vertical Distance = h = dtan∅   - \frac{1}{2}g\frac{2}{cos0}   ^{2}

  Applying geometry

                              \frac{1}{cos o} = tan^{2} o + 1

  Vertical Distance = h = d tan∅   - 2 g (tan^{2} o + 1)

               substituting the given parameters

               800 = 2000 tan ∅ - 2 (9.81)( tan^{2} o + 1)

              800 = 2000 tan ∅ - 19.6( tan^{2} o + 1)  Equation 4

Replacing tan ∅ = Q     .....................Equation 5

In order to get a quadratic equation that can be easily solve.

            800 = 2000 Q - 19.6Q^{2} + 19.6

Rearranging 19.6Q^{2} - 2000 Q + 780.4 = 0

                    Q_{1} = 101.6291

                      Q_{2} = 0.411

    Inserting the value of Q Into Equation 5

                 tan ∅ = 101.63    or tan ∅ = 0.4114

Taking the Tan inverse of each value of Q

                  ∅ = 89.44°     ∅ = 22.37°

             

4 0
2 years ago
Other questions:
  • (b) Find the position, velocity, and acceleration of the mass at time t = 5π/6.
    14·1 answer
  • Bridget is riding her bicycle up a hill. Which statements are correct? Check all that apply.
    14·2 answers
  • 1 km = 100 m. how many meters are in 2500 km?
    5·2 answers
  • Which term describes the amount of heat needed to change 1 kg of a substance from solid to liquid at its melting point? A. Speci
    13·1 answer
  • A jogger runs 6 km north ,5 km east then another 4km north her average speed 8 km how long will it take her to complete her run
    13·1 answer
  • A man standing in front of a mountain beats a drum at regular intervals. The rate of drumming is generally increased and he find
    10·1 answer
  • Three Small Identical Balls Have Charges -3 Times 10^-12 C, 8 Times 10^12 C And 4 Times 10^-12 C Respectively. They Are Brought
    15·1 answer
  • Maximum power transfer theorem iz related to which chapter of physics<br> Class 12
    13·1 answer
  • Please help me-. it’s part of my major grade.
    7·2 answers
  • what can you say about the motion of an object if its speed time graph is a straight line parallel to the time axis ? Also draw
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!