An object's momentum is the product of its mass and its velocity:
p = mv
p is its momentum, m is its mass, and v is its velocity.
Given values:
p = -80kg×m/s
m = 8kg
Plug in these values and solve for v:
-80 = 8v
v = -10m/s
Choice D
Answer:
0.278 m/s
Explanation:
We can answer the problem by using the law of conservation of momentum. In fact, the total momentum before the collision must be equal to the total momentum after the collision.
So we can write:

where
m = 0.200 kg is the mass of the koala bear
u = 0.750 m/s is the initial velocity of the koala bear
M = 0.350 kg is the mass of the other clay model
v is their final combined velocity
Solving the equation for v, we get

the correct answer is B. 1.27
Mechanical advantage of a lever is simply the ratio of the effort arm to the load arm.Effort arm is the distance from the pivot to the point of application of force while load arm is the distance of the lord from the pivot.
therefore, in this question, the effort arm is 0.28m while the load arm is 0.22 m. MA is calculated as follows: MA=effort arm/load arm
=0.28m/0.22m=1.27
South it is the same direction the car is already moving