The hardest part of the job is to find the right formula to use, and write it down. You've already done that ! The rest is just turning the crank until an answer falls out.
You wrote. E = m g h.
Beautiful.
Now divide each side by (g h), and you'll have the formula for mass:
m = E / (g h).
You know all the numbers on the right side. Just pluggum in, do the arithmetic, and you'll have the mass.
The answer is B tell me if I am wrong.
The addition of vectors involve both magnitude and direction. In this case, we make use of a triangle to visualize the problem. The length of two sides were given while the measure of the angle between the two sides can be derived. We then assign variables for each of the given quantities.
Let:
b = length of one side = 8 m
c = length of one side = 6 m
A = angle between b and c = 90°-25° = 75°
We then use the cosine law to find the length of the unknown side. The cosine law results to the formula: a^2 = b^2 + c^2 -2*b*c*cos(A). Substituting the values, we then have: a = sqrt[(8)^2 + (6)^2 -2(8)(6)cos(75°)]. Finally, we have a = 8.6691 m.
Next, we make use of the sine law to get the angle, B, which is opposite to the side B. The sine law results to the formula: sin(A)/a = sin(B)/b and consequently, sin(75)/8.6691 = sin(B)/8. We then get B = 63.0464°. However, the direction of the resultant vector is given by the angle Θ which is Θ = 90° - 63.0464° = 26.9536°.
In summary, the resultant vector has a magnitude of 8.6691 m and it makes an angle equal to 26.9536° with the x-axis.
Answer:

Explanation:
Given that
Length= 2L
Linear charge density=λ
Distance= d
K=1/(4πε)
The electric field at point P



So

Now by integrating above equation
