Answer:
Road A- dry
Road B- mud
Road C- wet
Explanation:
Surface conditions do affect the ease and speed with which a skateboarder can move, on a muddy surface, the tyres of the skate boards finds it difficult to establish adequate fictional force between the skates trees and the traveling surface. Hence, the muddy surface presents a very slippery travel ground for the skate, hence leading the to skateboarder needing to apply caution.
The speed on a wet surfave is height as the amount of firece that will be applied in other to accelerate is very small. The surface is wet and hence serves as a lubricant between the contact surface.
The dry road also has a high speed but lower than a wet surface, frictional force is high here and this tend to slow the skateboarder down except in sloppy terrains.
We want to study the impact of a sledgehammer and a wall.
Before the sledgehammer hits the wall, it has a given velocity and a given mass, so it has momentum and it has kinetic energy.
When it hits the wall, the velocity of the hammer disappears, this means that the energy is transferred to the wall, this "transfer of energy" can be thought of a force applied for a really short time on the wall, which for the third law of Newton, the force is also applied on the hammer.
This is why you feel the impact on the handle when you hit something with a hammer, this also means that some of the energy is dissipated on your arms.
Now, because the wall is made of a material usually not as strong as the head of the sledgehammer, we will see that in this interaction the wall seems more affected than the hammer, but the forces that each one experiences are exactly equal in magnitude.
If you want to learn more, you can read:
brainly.com/question/13952508
The current flowing in silicon bar is 2.02
10^-12 A.
<u>Explanation:</u>
Length of silicon bar, l = 10 μm = 0.001 cm
Free electron density, Ne = 104 cm^3
Hole density, Nh = 1016 cm^3
μn = 1200 cm^2 / V s
μр = 500 cm^2 / V s
The total current flowing in the bar is the sum of the drift current due to the hole and the electrons.
J = Je + Jh
J = n qE μn + p qE μp
where, n and p are electron and hole densities.
J = Eq (n μn + p μp)
we know that E = V / l
So, J = (V / l) q (n μn + p μp)
J = (1.6
10^-19) / 0.001 (104
1200 + 1016
500)
J = 1012480
10^-16 A / m^2.
or
J = 1.01
10^-9 A / m^2
Current, I = JA
A is the area of bar, A = 20 μm = 0.002 cm
I = 1.01
10^-9
0.002 = 2.02
10^-12
So, the current flowing in silicon bar is 2.02
10^-12 A.
Answer:

Explanation:
Given that,
The initial speed of a car, u = 0
Time, t = 18 s
Distance, d = 390 m
We need to find the acceleration of the car. Let it is a. Using the second equation of motion to find it.

or

So, the acceleration of the car is
.