1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elodia [21]
3 years ago
15

A camera lens used for taking close-up photographs has a focal length of 22.0 mm. The farthest it can be placed from the film is

32.9 mm. What is the closest object that can be photographed
Physics
1 answer:
Arada [10]3 years ago
3 0

Answer:

p = 6.64 cm

Explanation:

For this exercise we use the equation of the constructor

          \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

where f is the focal length, p and q are the distance to the object and the image, respectively

They tell us the focal length f = 2.2 cm and that the image as far as it can go is q = 3.29 cm, let's find the position of the object that creates this image

          \frac{1}{p} = \frac{1}{f} - \frac{1}{q}

          1 / p = 1 / 2.2 - 1/3.29

           1 / p = 0.15059

           p = 6.64 cm

therefore the farthest distance from the object is 6.64 c

You might be interested in
What is the kinetic energy i want a girl to answer a petty one
Alex Ar [27]
An object in motion lolllsss
8 0
3 years ago
Read 2 more answers
Power can be defined as
maria [59]
I think it’s D sorry If I’m wrong
4 0
3 years ago
Read 2 more answers
A 4-foot spring measures 8 feet long after a mass weighing 8 pounds is attached to it. The medium through which the mass moves o
aniked [119]

Correct question is;

A 4-foot spring measures 8 feet long after a mass weighing 8 pounds is attached to it. The medium through which the mass moves offers a damping force numerically equal to √2 times the instantaneous velocity. Find the equation of motion if the mass is initially released from the equilibrium position with a downward velocity of 7 ft/s. (Use g = 32 ft/s²)

Answer:

x(t) = 7te^(-2t√2)

Explanation:

We are given;

Weight; W = 8 lbs

mass; m = W/g

g = 32 ft/s²

Thus;

m = 8/32

m = ¼ slugs

From Newton's second law we can write the equation as;

m(d²x/dt²) = -kx - β(dx/dt)

Rearranging this, we have;

(d²x/dt²) + (β/m)(dx/dt) + (k/m)x = 0

Where;

β is damping constant = √2

k is spring constant = W/s

Where s = 8ft - 4ft = 4ft

k = 8/4

k = 2

Thus,we now have;

(d²x/dt²) + (√2/(¼))(dx/dt) + (2/(¼))x = 0

>> (d²x/dt²) + (4√2)dx/dt + 8x = 0

The auxiliary equation of this is;

m² + (4√2)m + 8 = 0

Using quadratic formula, we have;

m1 = m2 = -2√2

The general solution will be gotten from;

x_t = c1•e^(mt) + c2•t•e^(mt)

Plugging in the relevant values gives;

x_t = c1•e^(mt) + c2•t•e^(mt)

At initial condition of t = 0, x_t = 0 and thus; c1 = 0

Also at initial condition of t = 0, x'(0) = 7 and thus;

Since c1 = 0, then c2 = 7

Thus,equation of motion is;

x(t) = 7te^(-2t√2)

8 0
3 years ago
3. A sprinter leaves the starting blocks with an acceleration of 4.5 m/s2. What is the
UkoKoshka [18]

Hi there! :)

\large\boxed{v_{f} = 18 m/s}

Use the following kinematic equation to solve for the final velocity:

v_{f} = v_{i} + at

In this instance, the runner started from rest, so the initial velocity is 0 m/s. We can rewrite the equation as:

v_{f} = at

Plug in the given acceleration and time:

v_{f} = 4.5 * 4 = 18 m/s

5 0
3 years ago
A 7.7 kg sphere makes a perfectly inelastic collision with a second sphere initially at rest. The composite system moves with a
klemol [59]

Answer:

15.4 kg.

Explanation:

From the law of conservation of momentum,

Total momentum before collision = Total momentum after collision

mu+m'u' = V(m+m').................... Equation 1

Where m = mass of the first sphere, m' = mass of the second sphere, u = initial velocity of the first sphere, u' = initial velocity of the second sphere, V = common velocity of both sphere.

Given: m = 7.7 kg, u' = 0 m/s (at rest)

Let: u = x m/s, and V = 1/3x m/s

Substitute into equation 1

7.7(x)+m'(0) = 1/3x(7.7+m')

7.7x = 1/3x(7.7+m')

7.7 = 1/3(7.7+m')

23.1 = 7.7+m'

m' = 23.1-7.7

m' = 15.4 kg.

Hence the mass of the second sphere = 15.4 kg

7 0
3 years ago
Read 2 more answers
Other questions:
  • An object that is thrown straight up falls back to Earth. This is one-dimensional motion. (a) When is its velocity zero? (b) Doe
    10·2 answers
  • A 4.4 kg object is being pushed along a surface, causing it to accelerate at a rate of 1.5 m/s2 . Th e coeffi cient of kinetic f
    10·1 answer
  • georgia is jogging with a velocity of 4 m/s when she accelerates at 2 m/s squared for 3 seconds. How fast is Georgia running now
    6·1 answer
  • Given the following frequencies, calculate the corresponding periods. a. 60 Hz b. 8 MHz c. 140 kHz d. 2.4 GHz
    11·1 answer
  • How do the orbits of the planets farthest from the sun compare to the orbits of the planets closest to the sun?
    5·1 answer
  • What is rhe average velocity od a baseball dropped from rest that falls for 2 seconds?​
    8·1 answer
  • What velocity is needed for a 2400 kg car to have the same amount of momentum as an 800 kg car?
    7·1 answer
  • Which formula is used to find an object's acceleration?
    10·1 answer
  • A treasure map directs you to start at palm tree
    13·1 answer
  • The linear expansion coefficient of aluminium is 24 × 10^-6 (°C)^-1. When thetemperature is 33 °C, a spherical aluminium ball ha
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!